Peripheral blood microbial signatures in current and former smokers

Abstract The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesiz...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jarrett D. Morrow, Peter J. Castaldi, Robert P. Chase, Jeong H. Yun, Sool Lee, Yang-Yu Liu, Craig P. Hersh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8db98c635bc14781bf6fa823f5a349e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8db98c635bc14781bf6fa823f5a349e2
record_format dspace
spelling oai:doaj.org-article:8db98c635bc14781bf6fa823f5a349e22021-12-02T18:37:08ZPeripheral blood microbial signatures in current and former smokers10.1038/s41598-021-99238-42045-2322https://doaj.org/article/8db98c635bc14781bf6fa823f5a349e22021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99238-4https://doaj.org/toc/2045-2322Abstract The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesize the blood microbiome signature may be a surrogate for some lung microbial characteristics. We sought associations between the blood microbiome signature and lung-relevant host factors. Based on reads not mapped to the human genome, we detected microbial nucleic acids through secondary use of peripheral blood RNA-sequencing from 2,590 current and former smokers with and without chronic obstructive pulmonary disease (COPD) from the COPDGene study. We used the Genome Analysis Toolkit (GATK) microbial pipeline PathSeq to infer microbial profiles. We tested associations between the inferred profiles and lung disease relevant phenotypes and examined links to host gene expression pathways. We replicated our analyses using a second independent set of blood RNA-seq data from 1,065 COPDGene study subjects and performed a meta-analysis across the two studies. The four phyla with highest abundance across all subjects were Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. In our meta-analysis, we observed associations (q-value < 0.05) between Acinetobacter, Serratia, Streptococcus and Bacillus inferred abundances and Modified Medical Research Council (mMRC) dyspnea score. Current smoking status was associated (q < 0.05) with Acinetobacter, Serratia and Cutibacterium abundance. All 12 taxa investigated were associated with at least one white blood cell distribution variable. Abundance for nine of the 12 taxa was associated with sex, and seven of the 12 taxa were associated with race. Host-microbiome interaction analysis revealed clustering of genera associated with mMRC dyspnea score and smoking status, through shared links to several host pathways. This study is the first to identify a bacterial microbiome signature in the peripheral blood of current and former smokers. Understanding the relationships between systemic microbial signatures and lung-related phenotypes may inform novel interventions and aid understanding of the systemic effects of smoking.Jarrett D. MorrowPeter J. CastaldiRobert P. ChaseJeong H. YunSool LeeYang-Yu LiuCraig P. HershNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jarrett D. Morrow
Peter J. Castaldi
Robert P. Chase
Jeong H. Yun
Sool Lee
Yang-Yu Liu
Craig P. Hersh
Peripheral blood microbial signatures in current and former smokers
description Abstract The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesize the blood microbiome signature may be a surrogate for some lung microbial characteristics. We sought associations between the blood microbiome signature and lung-relevant host factors. Based on reads not mapped to the human genome, we detected microbial nucleic acids through secondary use of peripheral blood RNA-sequencing from 2,590 current and former smokers with and without chronic obstructive pulmonary disease (COPD) from the COPDGene study. We used the Genome Analysis Toolkit (GATK) microbial pipeline PathSeq to infer microbial profiles. We tested associations between the inferred profiles and lung disease relevant phenotypes and examined links to host gene expression pathways. We replicated our analyses using a second independent set of blood RNA-seq data from 1,065 COPDGene study subjects and performed a meta-analysis across the two studies. The four phyla with highest abundance across all subjects were Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. In our meta-analysis, we observed associations (q-value < 0.05) between Acinetobacter, Serratia, Streptococcus and Bacillus inferred abundances and Modified Medical Research Council (mMRC) dyspnea score. Current smoking status was associated (q < 0.05) with Acinetobacter, Serratia and Cutibacterium abundance. All 12 taxa investigated were associated with at least one white blood cell distribution variable. Abundance for nine of the 12 taxa was associated with sex, and seven of the 12 taxa were associated with race. Host-microbiome interaction analysis revealed clustering of genera associated with mMRC dyspnea score and smoking status, through shared links to several host pathways. This study is the first to identify a bacterial microbiome signature in the peripheral blood of current and former smokers. Understanding the relationships between systemic microbial signatures and lung-related phenotypes may inform novel interventions and aid understanding of the systemic effects of smoking.
format article
author Jarrett D. Morrow
Peter J. Castaldi
Robert P. Chase
Jeong H. Yun
Sool Lee
Yang-Yu Liu
Craig P. Hersh
author_facet Jarrett D. Morrow
Peter J. Castaldi
Robert P. Chase
Jeong H. Yun
Sool Lee
Yang-Yu Liu
Craig P. Hersh
author_sort Jarrett D. Morrow
title Peripheral blood microbial signatures in current and former smokers
title_short Peripheral blood microbial signatures in current and former smokers
title_full Peripheral blood microbial signatures in current and former smokers
title_fullStr Peripheral blood microbial signatures in current and former smokers
title_full_unstemmed Peripheral blood microbial signatures in current and former smokers
title_sort peripheral blood microbial signatures in current and former smokers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8db98c635bc14781bf6fa823f5a349e2
work_keys_str_mv AT jarrettdmorrow peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT peterjcastaldi peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT robertpchase peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT jeonghyun peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT soollee peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT yangyuliu peripheralbloodmicrobialsignaturesincurrentandformersmokers
AT craigphersh peripheralbloodmicrobialsignaturesincurrentandformersmokers
_version_ 1718377810802769920