An Optimized Machine Learning and Big Data Approach to Crime Detection
Crime detection is one of the most important research applications in machine learning. Identifying and reducing crime rates is crucial to developing a healthy society. Big Data techniques are applied to collect and analyse data: determine the required features and prime attributes that cause the em...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8dbe6dfa966c49139714bab91b1a8c74 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8dbe6dfa966c49139714bab91b1a8c74 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8dbe6dfa966c49139714bab91b1a8c742021-11-22T01:11:38ZAn Optimized Machine Learning and Big Data Approach to Crime Detection1530-867710.1155/2021/5291528https://doaj.org/article/8dbe6dfa966c49139714bab91b1a8c742021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/5291528https://doaj.org/toc/1530-8677Crime detection is one of the most important research applications in machine learning. Identifying and reducing crime rates is crucial to developing a healthy society. Big Data techniques are applied to collect and analyse data: determine the required features and prime attributes that cause the emergence of crime hotspots. The traditional crime detection and machine learning-based algorithms lack the ability to generate key prime attributes from the crime dataset, hence most often fail to predict crime patterns successfully. This paper is aimed at extracting the prime attributes such as time zones, crime probability, and crime hotspots and performing vulnerability analysis to increase the accuracy of the subject machine learning algorithm. We implemented our proposed methodology using two standard datasets. Results show that the proposed feature generation method increased the performance of machine learning models. The highest accuracy of 97.5% was obtained when the proposed methodology was applied to the Naïve Bayes algorithm while analysing the San Francisco dataset.Ashokkumar PalanivinayagamSiva Shankar GopalSweta BhattacharyaNoble AnumbeEbuka IbekeCresantus BiambaHindawi-WileyarticleTechnologyTTelecommunicationTK5101-6720ENWireless Communications and Mobile Computing, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Technology T Telecommunication TK5101-6720 |
spellingShingle |
Technology T Telecommunication TK5101-6720 Ashokkumar Palanivinayagam Siva Shankar Gopal Sweta Bhattacharya Noble Anumbe Ebuka Ibeke Cresantus Biamba An Optimized Machine Learning and Big Data Approach to Crime Detection |
description |
Crime detection is one of the most important research applications in machine learning. Identifying and reducing crime rates is crucial to developing a healthy society. Big Data techniques are applied to collect and analyse data: determine the required features and prime attributes that cause the emergence of crime hotspots. The traditional crime detection and machine learning-based algorithms lack the ability to generate key prime attributes from the crime dataset, hence most often fail to predict crime patterns successfully. This paper is aimed at extracting the prime attributes such as time zones, crime probability, and crime hotspots and performing vulnerability analysis to increase the accuracy of the subject machine learning algorithm. We implemented our proposed methodology using two standard datasets. Results show that the proposed feature generation method increased the performance of machine learning models. The highest accuracy of 97.5% was obtained when the proposed methodology was applied to the Naïve Bayes algorithm while analysing the San Francisco dataset. |
format |
article |
author |
Ashokkumar Palanivinayagam Siva Shankar Gopal Sweta Bhattacharya Noble Anumbe Ebuka Ibeke Cresantus Biamba |
author_facet |
Ashokkumar Palanivinayagam Siva Shankar Gopal Sweta Bhattacharya Noble Anumbe Ebuka Ibeke Cresantus Biamba |
author_sort |
Ashokkumar Palanivinayagam |
title |
An Optimized Machine Learning and Big Data Approach to Crime Detection |
title_short |
An Optimized Machine Learning and Big Data Approach to Crime Detection |
title_full |
An Optimized Machine Learning and Big Data Approach to Crime Detection |
title_fullStr |
An Optimized Machine Learning and Big Data Approach to Crime Detection |
title_full_unstemmed |
An Optimized Machine Learning and Big Data Approach to Crime Detection |
title_sort |
optimized machine learning and big data approach to crime detection |
publisher |
Hindawi-Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/8dbe6dfa966c49139714bab91b1a8c74 |
work_keys_str_mv |
AT ashokkumarpalanivinayagam anoptimizedmachinelearningandbigdataapproachtocrimedetection AT sivashankargopal anoptimizedmachinelearningandbigdataapproachtocrimedetection AT swetabhattacharya anoptimizedmachinelearningandbigdataapproachtocrimedetection AT nobleanumbe anoptimizedmachinelearningandbigdataapproachtocrimedetection AT ebukaibeke anoptimizedmachinelearningandbigdataapproachtocrimedetection AT cresantusbiamba anoptimizedmachinelearningandbigdataapproachtocrimedetection AT ashokkumarpalanivinayagam optimizedmachinelearningandbigdataapproachtocrimedetection AT sivashankargopal optimizedmachinelearningandbigdataapproachtocrimedetection AT swetabhattacharya optimizedmachinelearningandbigdataapproachtocrimedetection AT nobleanumbe optimizedmachinelearningandbigdataapproachtocrimedetection AT ebukaibeke optimizedmachinelearningandbigdataapproachtocrimedetection AT cresantusbiamba optimizedmachinelearningandbigdataapproachtocrimedetection |
_version_ |
1718418294409527296 |