Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics
Ran Chen,1,* Tingting Wang,2,* Jie Song,1,* Daojun Pu,3,* Dan He,1 Jianjun Li,1 Jie Yang,1 Kailing Li,1 Cailing Zhong,1 Jingqing Zhang1 1Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, Peop...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8de1b5629cff4930b86f56829001052b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8de1b5629cff4930b86f56829001052b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8de1b5629cff4930b86f56829001052b2021-12-02T16:11:40ZAntiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics1178-2013https://doaj.org/article/8de1b5629cff4930b86f56829001052b2021-07-01T00:00:00Zhttps://www.dovepress.com/antiviral-drug-delivery-system-for-enhanced-bioactivity-better-metabol-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Ran Chen,1,* Tingting Wang,2,* Jie Song,1,* Daojun Pu,3,* Dan He,1 Jianjun Li,1 Jie Yang,1 Kailing Li,1 Cailing Zhong,1 Jingqing Zhang1 1Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 3Pharmaceutical Institute, Southwest Pharmaceutical Limited Company, Chongqing, 400038, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jingqing Zhang Email zjqrae01@163.comAbstract: Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.Keywords: antiviral drug, delivery systems, metabolism, pharmacokinetics, pharmacodynamicsChen RWang TSong JPu DHe DLi JYang JLi KZhong CZhang JDove Medical Pressarticleantiviral drugdelivery systemsmetabolismpharmacokineticspharmacodynamicsMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 4959-4984 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
antiviral drug delivery systems metabolism pharmacokinetics pharmacodynamics Medicine (General) R5-920 |
spellingShingle |
antiviral drug delivery systems metabolism pharmacokinetics pharmacodynamics Medicine (General) R5-920 Chen R Wang T Song J Pu D He D Li J Yang J Li K Zhong C Zhang J Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
description |
Ran Chen,1,* Tingting Wang,2,* Jie Song,1,* Daojun Pu,3,* Dan He,1 Jianjun Li,1 Jie Yang,1 Kailing Li,1 Cailing Zhong,1 Jingqing Zhang1 1Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 3Pharmaceutical Institute, Southwest Pharmaceutical Limited Company, Chongqing, 400038, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jingqing Zhang Email zjqrae01@163.comAbstract: Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.Keywords: antiviral drug, delivery systems, metabolism, pharmacokinetics, pharmacodynamics |
format |
article |
author |
Chen R Wang T Song J Pu D He D Li J Yang J Li K Zhong C Zhang J |
author_facet |
Chen R Wang T Song J Pu D He D Li J Yang J Li K Zhong C Zhang J |
author_sort |
Chen R |
title |
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
title_short |
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
title_full |
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
title_fullStr |
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
title_full_unstemmed |
Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics |
title_sort |
antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics |
publisher |
Dove Medical Press |
publishDate |
2021 |
url |
https://doaj.org/article/8de1b5629cff4930b86f56829001052b |
work_keys_str_mv |
AT chenr antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT wangt antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT songj antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT pud antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT hed antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT lij antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT yangj antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT lik antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT zhongc antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics AT zhangj antiviraldrugdeliverysystemforenhancedbioactivitybettermetabolismandpharmacokineticcharacteristics |
_version_ |
1718384422220201984 |