Engineered membrane protein antigens successfully induce antibodies against extracellular regions of claudin-5

Abstract The production of antibodies against the extracellular regions (ECR) of multispanning membrane proteins is notoriously difficult because of the low productivity and immunogenicity of membrane proteins due to their complex structure and highly conserved sequences among species. Here, we intr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yosuke Hashimoto, Wei Zhou, Kohtaroh Hamauchi, Keisuke Shirakura, Takefumi Doi, Kiyohito Yagi, Tatsuya Sawasaki, Yoshiaki Okada, Masuo Kondoh, Hiroyuki Takeda
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8dea233c0348444988ed6f1f7cd39b73
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The production of antibodies against the extracellular regions (ECR) of multispanning membrane proteins is notoriously difficult because of the low productivity and immunogenicity of membrane proteins due to their complex structure and highly conserved sequences among species. Here, we introduce a new method to generate ECR-binding antibodies utilizing engineered liposomal immunogen prepared using a wheat cell-free protein synthesis system. We used claudin-5 (CLDN-5) as the target antigen, which is a notoriously difficult to produce and poorly immunogenic membrane protein with two highly conserved extracellular loops. We drastically improved the productivity of CLDN-5 in the cell-free system after suppressing and normalizing mRNA GC content. To overcome its low immunogenicity, two engineered antigens were designed and synthesized as proteoliposomes: a human/mouse chimeric CLDN-5, and a CLDN-5-based artificial membrane protein consisting of symmetrically arranged ECRs. Intraperitoneal immunization of both engineered CLDN-5 ECR antigens induced ECR-binding antibodies in mice with a high success rate. We isolated five monoclonal antibodies that specifically recognized CLDN-5 ECR. Antibody clone 2B12 showed high affinity (<10 nM) and inhibited CLDN-5-containing tight junctions. These results demonstrate the effectiveness of the methods for monoclonal antibody development targeting difficult-to-produce membrane proteins such as CLDNs.