Compressive sampling based on frequency saliency for remote sensing imaging
Abstract In saliency-based compressive sampling (CS) for remote sensing image signals, the saliency information of images is used to allocate more sensing resources to salient regions than to non-salient regions. However, the pulsed cosine transform method can generate large errors in the calculatio...
Guardado en:
Autores principales: | Jin Li, Zilong Liu, Fengdeng Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8dfe2df180f14a379f23006b74aa9aae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the Lossless Compression Ratio of Remote Sensing Images With Configurational Entropy
por: Xinghua Cheng, et al.
Publicado: (2021) -
Discriminative Prior - Prior Image Constrained Compressed Sensing Reconstruction for Low-Dose CT Imaging
por: Yang Chen, et al.
Publicado: (2017) -
Remote sensing image description based on word embedding and end-to-end deep learning
por: Yuan Wang, et al.
Publicado: (2021) -
Estimating apple tree canopy chlorophyll content based on Sentinel-2A remote sensing imaging
por: Cheng Li, et al.
Publicado: (2018) -
Comparison of metatranscriptomic samples based on k-tuple frequencies.
por: Ying Wang, et al.
Publicado: (2014)