Activity-dependent regulation of mitochondrial motility in developing cortical dendrites

Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We invest...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Catia AP Silva, Annik Yalnizyan-Carson, M Victoria Fernández Busch, Mike van Zwieten, Matthijs Verhage, Christian Lohmann
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8e00e2bafc1f46d9be301460c1555bff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8e00e2bafc1f46d9be301460c1555bff
record_format dspace
spelling oai:doaj.org-article:8e00e2bafc1f46d9be301460c1555bff2021-11-24T12:24:59ZActivity-dependent regulation of mitochondrial motility in developing cortical dendrites10.7554/eLife.620912050-084Xe62091https://doaj.org/article/8e00e2bafc1f46d9be301460c1555bff2021-09-01T00:00:00Zhttps://elifesciences.org/articles/62091https://doaj.org/toc/2050-084XDeveloping neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.Catia AP SilvaAnnik Yalnizyan-CarsonM Victoria Fernández BuschMike van ZwietenMatthijs VerhageChristian LohmanneLife Sciences Publications Ltdarticlein vivo imagingsynaptic transmissionintracellular transportcalcium signalingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic in vivo imaging
synaptic transmission
intracellular transport
calcium signaling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle in vivo imaging
synaptic transmission
intracellular transport
calcium signaling
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Catia AP Silva
Annik Yalnizyan-Carson
M Victoria Fernández Busch
Mike van Zwieten
Matthijs Verhage
Christian Lohmann
Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
description Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.
format article
author Catia AP Silva
Annik Yalnizyan-Carson
M Victoria Fernández Busch
Mike van Zwieten
Matthijs Verhage
Christian Lohmann
author_facet Catia AP Silva
Annik Yalnizyan-Carson
M Victoria Fernández Busch
Mike van Zwieten
Matthijs Verhage
Christian Lohmann
author_sort Catia AP Silva
title Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
title_short Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
title_full Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
title_fullStr Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
title_full_unstemmed Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
title_sort activity-dependent regulation of mitochondrial motility in developing cortical dendrites
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/8e00e2bafc1f46d9be301460c1555bff
work_keys_str_mv AT catiaapsilva activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
AT annikyalnizyancarson activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
AT mvictoriafernandezbusch activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
AT mikevanzwieten activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
AT matthijsverhage activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
AT christianlohmann activitydependentregulationofmitochondrialmotilityindevelopingcorticaldendrites
_version_ 1718415059109019648