Semi-Supervised Training for Positioning of Welding Seams
Robotic welding often uses vision-based measurement to find the correct placement of the welding seam. Traditional machine vision methods work well in many cases but lack robustness when faced with variations in the manufacturing process or in the imaging conditions. While supervised deep neural net...
Guardado en:
Autores principales: | Wenbin Zhang, Jochen Lang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e110c9f998142fd94a346a7bb346a65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ℓ<sub>1</sub>-norm based safe semi-supervised learning
por: Haitao Gan, et al.
Publicado: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Chao Fan, et al.
Publicado: (2021) -
A Novel Approach to the Holistic 3D Characterization of Weld Seams—Paving the Way for Deep Learning-Based Process Monitoring
por: Maximilian Schmoeller, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Jiarui Chen, et al.
Publicado: (2021)