A correlation propagation model for nonlinear fourier transform of second order solitons

Abstract Inverse scattering transform or nonlinear Fourier transform (NFT) has been proposed for optic communication to increase channel capacity beyond the well known Shannon limit. Within NFT, solitons, as discrete outputs of the transform, can be a type of resource to carry information. Second-or...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wen Qi Zhang, Terence H. Chan, V. Shahraam Afshar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8e34b864176c4516b21e25ec67b3aeac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8e34b864176c4516b21e25ec67b3aeac
record_format dspace
spelling oai:doaj.org-article:8e34b864176c4516b21e25ec67b3aeac2021-12-02T13:24:36ZA correlation propagation model for nonlinear fourier transform of second order solitons10.1038/s41598-021-82011-y2045-2322https://doaj.org/article/8e34b864176c4516b21e25ec67b3aeac2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82011-yhttps://doaj.org/toc/2045-2322Abstract Inverse scattering transform or nonlinear Fourier transform (NFT) has been proposed for optic communication to increase channel capacity beyond the well known Shannon limit. Within NFT, solitons, as discrete outputs of the transform, can be a type of resource to carry information. Second-order solitons as the most basic higher order solitons show correlations among their parameters in the nonlinear Fourier domain as they propagate along a fibre. In this work, we report, for the first time, a correlation propagation model for second-order soliton pulses in the nonlinear Fourier domain. The model can predict covariance matrices of soliton pulses at any propagation distance using only the covariance matrices calculated at the input of the fibre with different phases in the nonlinear Fourier domain without the need of propagating the pulses.Wen Qi ZhangTerence H. ChanV. Shahraam AfsharNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Wen Qi Zhang
Terence H. Chan
V. Shahraam Afshar
A correlation propagation model for nonlinear fourier transform of second order solitons
description Abstract Inverse scattering transform or nonlinear Fourier transform (NFT) has been proposed for optic communication to increase channel capacity beyond the well known Shannon limit. Within NFT, solitons, as discrete outputs of the transform, can be a type of resource to carry information. Second-order solitons as the most basic higher order solitons show correlations among their parameters in the nonlinear Fourier domain as they propagate along a fibre. In this work, we report, for the first time, a correlation propagation model for second-order soliton pulses in the nonlinear Fourier domain. The model can predict covariance matrices of soliton pulses at any propagation distance using only the covariance matrices calculated at the input of the fibre with different phases in the nonlinear Fourier domain without the need of propagating the pulses.
format article
author Wen Qi Zhang
Terence H. Chan
V. Shahraam Afshar
author_facet Wen Qi Zhang
Terence H. Chan
V. Shahraam Afshar
author_sort Wen Qi Zhang
title A correlation propagation model for nonlinear fourier transform of second order solitons
title_short A correlation propagation model for nonlinear fourier transform of second order solitons
title_full A correlation propagation model for nonlinear fourier transform of second order solitons
title_fullStr A correlation propagation model for nonlinear fourier transform of second order solitons
title_full_unstemmed A correlation propagation model for nonlinear fourier transform of second order solitons
title_sort correlation propagation model for nonlinear fourier transform of second order solitons
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8e34b864176c4516b21e25ec67b3aeac
work_keys_str_mv AT wenqizhang acorrelationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
AT terencehchan acorrelationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
AT vshahraamafshar acorrelationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
AT wenqizhang correlationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
AT terencehchan correlationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
AT vshahraamafshar correlationpropagationmodelfornonlinearfouriertransformofsecondordersolitons
_version_ 1718393044753973248