Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models.
Discovering low-dimensional structure in real-world networks requires a suitable null model that defines the absence of meaningful structure. Here we introduce a spectral approach for detecting a network's low-dimensional structure, and the nodes that participate in it, using any null model. We...
Guardado en:
Autores principales: | Mark D Humphries, Javier A Caballero, Mat Evans, Silvia Maggi, Abhinav Singh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e3af9a39a9346388a00ba72b8347795 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inverse Spectral Problems for Arbitrary-Order Differential Operators with Distribution Coefficients
por: Natalia P. Bondarenko
Publicado: (2021) -
Deep neural network for detecting arbitrary precision peptide features through attention based segmentation
por: Fatema Tuz Zohora, et al.
Publicado: (2021) -
Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits.
por: Wei Cheng, et al.
Publicado: (2020) -
Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential
por: Przemysław Kościk, et al.
Publicado: (2021) -
Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass
por: Frederik Kotz, et al.
Publicado: (2019)