Temperature dependent giant resistance anomaly in LaAlO3/SrTiO3 nanostructures

Abstract The resistance of the electron gas (2DEG) at the interface between the two band insulators LaAlO3 (LAO) and SrTiO3 (STO) typically drops monotonically with temperature and R/T curves during cooling and warm-up look identical for large area structures. Here we show that if the LAO/STO is lat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Z. Minhas, A. Müller, F. Heyroth, H. H. Blaschek, G. Schmidt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8e53c54d9c6a45c6ad6a5ae4aab157b8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The resistance of the electron gas (2DEG) at the interface between the two band insulators LaAlO3 (LAO) and SrTiO3 (STO) typically drops monotonically with temperature and R/T curves during cooling and warm-up look identical for large area structures. Here we show that if the LAO/STO is laterally restricted by nanopatterning the resistance exhibits a temperature anomaly. Warming up nanostructures from low temperatures leads to one or two pronounced resistance peaks between 50 and 100 K not observed for larger dimensions. During cool-down current filaments emerge at the domain walls that form during a structural phase transition of the STO substrate. During warm-up the reverse phase transition can interrupt filaments before the sheet conductivity which dominates at higher temperature is reestablished. Due to the limited number of filaments in a nanostructure this process can result in a complete loss of conductance. As a consequence of these findings the transport physics extracted from experiments in small and large area LAO/STO structures may need to be reconsidered.