Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback
We consider a linear discrete time-varying input-output system. Our goal is to study the problem of local assignability of the Lyapunov spectrum by static output feedback control. To this end we introduce the notion of uniform consistency for discrete-time linear systems which is the extension of th...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e5c9f90514e44c4887a797ea4190a95 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8e5c9f90514e44c4887a797ea4190a95 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8e5c9f90514e44c4887a797ea4190a952021-11-23T00:01:28ZLyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback2169-353610.1109/ACCESS.2021.3114767https://doaj.org/article/8e5c9f90514e44c4887a797ea4190a952021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9546787/https://doaj.org/toc/2169-3536We consider a linear discrete time-varying input-output system. Our goal is to study the problem of local assignability of the Lyapunov spectrum by static output feedback control. To this end we introduce the notion of uniform consistency for discrete-time linear systems which is the extension of the notion of uniform complete controllability to input-output systems. The property of uniform consistency is investigated, some necessary and sufficient conditions for this property are obtained. The notion of uniform local attainability is introduced for the closed-loop system. We prove that uniform consistency implies uniform local attainability of the closed-loop system. The property of local Lyapunov reducibility is introduced for the closed-loop system. We prove that uniform local attainability implies local Lyapunov reducibility. We prove that, for a locally Lyapunov reducible system, the Lyapunov spectrum is locally assignable, if the free system is diagonalizable or regular (in the Lyapunov sence) or has the stable Lyapunov spectrum.Adam CzornikEvgenii MakarovMichal NiezabitowskiSvetlana PopovaVasilii ZaitsevIEEEarticleLinear discrete time-varying input-output systemslocal assignabilityLyapunov spectrumpole assignment problemstatic output feedbackuniform consistencyElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 134174-134191 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Linear discrete time-varying input-output systems local assignability Lyapunov spectrum pole assignment problem static output feedback uniform consistency Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Linear discrete time-varying input-output systems local assignability Lyapunov spectrum pole assignment problem static output feedback uniform consistency Electrical engineering. Electronics. Nuclear engineering TK1-9971 Adam Czornik Evgenii Makarov Michal Niezabitowski Svetlana Popova Vasilii Zaitsev Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
description |
We consider a linear discrete time-varying input-output system. Our goal is to study the problem of local assignability of the Lyapunov spectrum by static output feedback control. To this end we introduce the notion of uniform consistency for discrete-time linear systems which is the extension of the notion of uniform complete controllability to input-output systems. The property of uniform consistency is investigated, some necessary and sufficient conditions for this property are obtained. The notion of uniform local attainability is introduced for the closed-loop system. We prove that uniform consistency implies uniform local attainability of the closed-loop system. The property of local Lyapunov reducibility is introduced for the closed-loop system. We prove that uniform local attainability implies local Lyapunov reducibility. We prove that, for a locally Lyapunov reducible system, the Lyapunov spectrum is locally assignable, if the free system is diagonalizable or regular (in the Lyapunov sence) or has the stable Lyapunov spectrum. |
format |
article |
author |
Adam Czornik Evgenii Makarov Michal Niezabitowski Svetlana Popova Vasilii Zaitsev |
author_facet |
Adam Czornik Evgenii Makarov Michal Niezabitowski Svetlana Popova Vasilii Zaitsev |
author_sort |
Adam Czornik |
title |
Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
title_short |
Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
title_full |
Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
title_fullStr |
Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
title_full_unstemmed |
Lyapunov Spectrum Local Assignability of Linear Discrete Time-Varying Systems by Static Output Feedback |
title_sort |
lyapunov spectrum local assignability of linear discrete time-varying systems by static output feedback |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/8e5c9f90514e44c4887a797ea4190a95 |
work_keys_str_mv |
AT adamczornik lyapunovspectrumlocalassignabilityoflineardiscretetimevaryingsystemsbystaticoutputfeedback AT evgeniimakarov lyapunovspectrumlocalassignabilityoflineardiscretetimevaryingsystemsbystaticoutputfeedback AT michalniezabitowski lyapunovspectrumlocalassignabilityoflineardiscretetimevaryingsystemsbystaticoutputfeedback AT svetlanapopova lyapunovspectrumlocalassignabilityoflineardiscretetimevaryingsystemsbystaticoutputfeedback AT vasiliizaitsev lyapunovspectrumlocalassignabilityoflineardiscretetimevaryingsystemsbystaticoutputfeedback |
_version_ |
1718417387561156608 |