Predicting youth diabetes risk using NHANES data and machine learning
Abstract Prediabetes and diabetes mellitus (preDM/DM) have become alarmingly prevalent among youth in recent years. However, simple questionnaire-based screening tools to reliably assess diabetes risk are only available for adults, not youth. As a first step in developing such a tool, we used a larg...
Enregistré dans:
Auteurs principaux: | Nita Vangeepuram, Bian Liu, Po-hsiang Chiu, Linhua Wang, Gaurav Pandey |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8e6be70c890b40e583fd13c28f1b28c2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
par: Mathieu Ravaut, et autres
Publié: (2021) -
A comparison of machine learning algorithms for diabetes prediction
par: Jobeda Jamal Khanam, et autres
Publié: (2021) -
A machine learning approach predicts future risk to suicidal ideation from social media data
par: Arunima Roy, et autres
Publié: (2020) -
Calcium intake and serum concentration in relation to risk of cardiovascular death in NHANES III.
par: Mieke Van Hemelrijck, et autres
Publié: (2013) -
Hearing Loss and Physical Functioning Among Adults with Heart Failure: Data from NHANES
par: Cosiano MF, et autres
Publié: (2020)