An Improved Self-Training Method for Positive Unlabeled Time Series Classification Using DTW Barycenter Averaging
Traditional supervised time series classification (TSC) tasks assume that all training data are labeled. However, in practice, manually labelling all unlabeled data could be very time-consuming and often requires the participation of skilled domain experts. In this paper, we concern with the positiv...
Guardado en:
Autores principales: | Jing Li, Haowen Zhang, Yabo Dong, Tongbin Zuo, Duanqing Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e7f01c330cb45f9aa4fc325ef7b54b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
por: Fa Zhao, et al.
Publicado: (2021) -
Progressive Dynamic Time Warping for Noninvasive Blood Pressure Estimation
por: Pielmus Alexandru-Gabriel, et al.
Publicado: (2020) -
Machine learning based identification of elderly persons with cognitive impairment using dynamic time warping
por: Kondragunta Jyothsna, et al.
Publicado: (2020) -
A Hybrid Approach for Clustering Uncertain Time Series
por: Ruizhe Ma, et al.
Publicado: (2020) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Jianing Xi, et al.
Publicado: (2021)