An Improved Self-Training Method for Positive Unlabeled Time Series Classification Using DTW Barycenter Averaging
Traditional supervised time series classification (TSC) tasks assume that all training data are labeled. However, in practice, manually labelling all unlabeled data could be very time-consuming and often requires the participation of skilled domain experts. In this paper, we concern with the positiv...
Enregistré dans:
Auteurs principaux: | Jing Li, Haowen Zhang, Yabo Dong, Tongbin Zuo, Duanqing Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8e7f01c330cb45f9aa4fc325ef7b54b0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the DTW–LSTM Combination Method and MODIS Time Series Data
par: Fa Zhao, et autres
Publié: (2021) -
Progressive Dynamic Time Warping for Noninvasive Blood Pressure Estimation
par: Pielmus Alexandru-Gabriel, et autres
Publié: (2020) -
Machine learning based identification of elderly persons with cognitive impairment using dynamic time warping
par: Kondragunta Jyothsna, et autres
Publié: (2020) -
A Hybrid Approach for Clustering Uncertain Time Series
par: Ruizhe Ma, et autres
Publié: (2020) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
par: Jianing Xi, et autres
Publié: (2021)