Feature-Based Interpretation of the Deep Neural Network
The significant advantage of deep neural networks is that the upper layer can capture the high-level features of data based on the information acquired from the lower layer by stacking layers deeply. Since it is challenging to interpret what knowledge the neural network has learned, various studies...
Guardado en:
Autores principales: | Eun-Hun Lee, Hyeoncheol Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e911b6ca70f453995ea77a9bb616082 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Random Forest Similarity Maps: A Scalable Visual Representation for Global and Local Interpretation
por: Dipankar Mazumdar, et al.
Publicado: (2021) -
Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
por: Francisco S. Marcondes, et al.
Publicado: (2021) -
A Data Augmentation Method for War Trauma Using the War Trauma Severity Score and Deep Neural Networks
por: Jibin Yin, et al.
Publicado: (2021) -
Edge Network Optimization Based on AI Techniques: A Survey
por: Mitra Pooyandeh, et al.
Publicado: (2021) -
Comparison of Deep Neural Network Models and Effectiveness of EMG Signal Feature Value for Estimating Dorsiflexion
por: Muhammad Akmal Bin Mohammed Zaffir, et al.
Publicado: (2021)