Designing and understanding light-harvesting devices with machine learning
Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic exc...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic excitations. |
---|