Designing and understanding light-harvesting devices with machine learning

Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic exc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Florian Häse, Loïc M. Roch, Pascal Friederich, Alán Aspuru-Guzik
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8e95f0aafa4d4b12ab2e077e5b7f3b6f
record_format dspace
spelling oai:doaj.org-article:8e95f0aafa4d4b12ab2e077e5b7f3b6f2021-12-02T14:54:28ZDesigning and understanding light-harvesting devices with machine learning10.1038/s41467-020-17995-82041-1723https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17995-8https://doaj.org/toc/2041-1723Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic excitations.Florian HäseLoïc M. RochPascal FriederichAlán Aspuru-GuzikNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Florian Häse
Loïc M. Roch
Pascal Friederich
Alán Aspuru-Guzik
Designing and understanding light-harvesting devices with machine learning
description Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic excitations.
format article
author Florian Häse
Loïc M. Roch
Pascal Friederich
Alán Aspuru-Guzik
author_facet Florian Häse
Loïc M. Roch
Pascal Friederich
Alán Aspuru-Guzik
author_sort Florian Häse
title Designing and understanding light-harvesting devices with machine learning
title_short Designing and understanding light-harvesting devices with machine learning
title_full Designing and understanding light-harvesting devices with machine learning
title_fullStr Designing and understanding light-harvesting devices with machine learning
title_full_unstemmed Designing and understanding light-harvesting devices with machine learning
title_sort designing and understanding light-harvesting devices with machine learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f
work_keys_str_mv AT florianhase designingandunderstandinglightharvestingdeviceswithmachinelearning
AT loicmroch designingandunderstandinglightharvestingdeviceswithmachinelearning
AT pascalfriederich designingandunderstandinglightharvestingdeviceswithmachinelearning
AT alanaspuruguzik designingandunderstandinglightharvestingdeviceswithmachinelearning
_version_ 1718389398387556352