Designing and understanding light-harvesting devices with machine learning
Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic exc...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8e95f0aafa4d4b12ab2e077e5b7f3b6f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8e95f0aafa4d4b12ab2e077e5b7f3b6f2021-12-02T14:54:28ZDesigning and understanding light-harvesting devices with machine learning10.1038/s41467-020-17995-82041-1723https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17995-8https://doaj.org/toc/2041-1723Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic excitations.Florian HäseLoïc M. RochPascal FriederichAlán Aspuru-GuzikNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Florian Häse Loïc M. Roch Pascal Friederich Alán Aspuru-Guzik Designing and understanding light-harvesting devices with machine learning |
description |
Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic excitations. |
format |
article |
author |
Florian Häse Loïc M. Roch Pascal Friederich Alán Aspuru-Guzik |
author_facet |
Florian Häse Loïc M. Roch Pascal Friederich Alán Aspuru-Guzik |
author_sort |
Florian Häse |
title |
Designing and understanding light-harvesting devices with machine learning |
title_short |
Designing and understanding light-harvesting devices with machine learning |
title_full |
Designing and understanding light-harvesting devices with machine learning |
title_fullStr |
Designing and understanding light-harvesting devices with machine learning |
title_full_unstemmed |
Designing and understanding light-harvesting devices with machine learning |
title_sort |
designing and understanding light-harvesting devices with machine learning |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f |
work_keys_str_mv |
AT florianhase designingandunderstandinglightharvestingdeviceswithmachinelearning AT loicmroch designingandunderstandinglightharvestingdeviceswithmachinelearning AT pascalfriederich designingandunderstandinglightharvestingdeviceswithmachinelearning AT alanaspuruguzik designingandunderstandinglightharvestingdeviceswithmachinelearning |
_version_ |
1718389398387556352 |