Designing and understanding light-harvesting devices with machine learning
Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic exc...
Guardado en:
Autores principales: | Florian Häse, Loïc M. Roch, Pascal Friederich, Alán Aspuru-Guzik |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments
por: Mario Krenn, et al.
Publicado: (2021) -
Automated design of superconducting circuits and its application to 4-local couplers
por: Tim Menke, et al.
Publicado: (2021) -
Data-science driven autonomous process optimization
por: Melodie Christensen, et al.
Publicado: (2021) -
Studying light-harvesting models with superconducting circuits
por: Anton Potočnik, et al.
Publicado: (2018) -
The justification of interaction of fruits with the rolling-in device of a combine-harvester for harvesting cucurbit crops
por: Ulyanov Maxim, et al.
Publicado: (2021)