Designing and understanding light-harvesting devices with machine learning
Photon-induced charge separation phenomena are at the heart of light-harvesting applications but challenging to be described by quantum mechanical models. Here the authors illustrate the potential of machine-learning approaches towards understanding the fundamental processes governing electronic exc...
Enregistré dans:
Auteurs principaux: | Florian Häse, Loïc M. Roch, Pascal Friederich, Alán Aspuru-Guzik |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8e95f0aafa4d4b12ab2e077e5b7f3b6f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments
par: Mario Krenn, et autres
Publié: (2021) -
Automated design of superconducting circuits and its application to 4-local couplers
par: Tim Menke, et autres
Publié: (2021) -
Data-science driven autonomous process optimization
par: Melodie Christensen, et autres
Publié: (2021) -
Studying light-harvesting models with superconducting circuits
par: Anton Potočnik, et autres
Publié: (2018) -
The justification of interaction of fruits with the rolling-in device of a combine-harvester for harvesting cucurbit crops
par: Ulyanov Maxim, et autres
Publié: (2021)