The geometry of masking in neural populations
Cortical responses are highly heterogeneous, making it difficult to describe how they behave as a population. Here, the author overcomes this problem by introducing a geometric approach to study the representation of orientation and its transformation under the presence of a mask.
Guardado en:
Autor principal: | Dario L. Ringach |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ebb0ae7802d420792554dc7dc2e849b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Separability and geometry of object manifolds in deep neural networks
por: Uri Cohen, et al.
Publicado: (2020) -
Masking Feedforward Neural Networks Against Power Analysis Attacks
por: Athanasiou Konstantinos, et al.
Publicado: (2022) -
Predictive masking of an artificial scotoma is associated with a system-wide reconfiguration of neural populations in the human visual cortex
por: Joana Carvalho, et al.
Publicado: (2021) -
Research on Recognition of Faces with Masks Based on Improved Neural Network
por: Song Zhang, et al.
Publicado: (2021) -
Proposal of a Mask and Its Performance Analysis with CFD for an Enhanced Aerodynamic Geometry That Facilitates Filtering and Breathing against COVID-19
por: Boris Miguel López-Rebollar, et al.
Publicado: (2021)