Detecting Cataract Using Smartphones
Objective: Cataract, which is the clouding of the crystalline lens, is the most prevalent eye disease accounting for 51% of all eye diseases in the U.S. Cataract is a progressive disease, and its early detection is critical for preventing blindness. In this paper, an efficient approach to...
Guardado en:
Autores principales: | Behnam Askarian, Peter Ho, Jo Woon Chong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ec36fea2b8947b0ab3bfeae46570259 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
RADx Tech Viability and Steering Panels: A Model for MedTech Translational Grant Review
por: Paul Tessier, et al.
Publicado: (2021) -
Ultrasound Sample Entropy Imaging: A New Approach for Evaluating Hepatic Steatosis and Fibrosis
por: Hsien-Jung Chan, et al.
Publicado: (2021) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Autonomous Robot for Removing Superficial Traumatic Blood
por: Baiquan Su, et al.
Publicado: (2021) -
Prediction for the Risk of Multiple Chronic Conditions Among Working Population in the United States With Machine Learning Models
por: Jingmei Yang, et al.
Publicado: (2021)