Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation margi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa4556 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ed1cb4c4b644ae9b9c16cb63afa4556 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ed1cb4c4b644ae9b9c16cb63afa45562021-12-02T08:43:35ZApplication of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study2055-03242055-033210.1080/20550324.2017.1325987https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa45562017-01-01T00:00:00Zhttp://dx.doi.org/10.1080/20550324.2017.1325987https://doaj.org/toc/2055-0324https://doaj.org/toc/2055-0332This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation marginally. Octylsilane surface-modified XLPE/silica nano 3 wt % exhibits the lowest PD activity with highest discharge inception voltage and breakdown voltage. Also, the issue of change in the polymer structure due to the addition of nanofillers is reported here. The differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR), and contact angle measurement study conducted suggests that the addition of nanosilica leads to the change in the melting point, thermal degradation temperature, heat of fusion, bonding structure and the contact angle of the polymer, respectively. These structural changes are explained with the supporting theory.Paramane Ashish SharadK. Sathish KumarTaylor & Francis GrouparticleCrosslinked polyethyleneNanocompositesElectrical insulationPartial dischargeMorphologySurface modificationMaterials of engineering and construction. Mechanics of materialsTA401-492Polymers and polymer manufactureTP1080-1185ENNanocomposites, Vol 3, Iss 1, Pp 30-41 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Crosslinked polyethylene Nanocomposites Electrical insulation Partial discharge Morphology Surface modification Materials of engineering and construction. Mechanics of materials TA401-492 Polymers and polymer manufacture TP1080-1185 |
spellingShingle |
Crosslinked polyethylene Nanocomposites Electrical insulation Partial discharge Morphology Surface modification Materials of engineering and construction. Mechanics of materials TA401-492 Polymers and polymer manufacture TP1080-1185 Paramane Ashish Sharad K. Sathish Kumar Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
description |
This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation marginally. Octylsilane surface-modified XLPE/silica nano 3 wt % exhibits the lowest PD activity with highest discharge inception voltage and breakdown voltage. Also, the issue of change in the polymer structure due to the addition of nanofillers is reported here. The differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR), and contact angle measurement study conducted suggests that the addition of nanosilica leads to the change in the melting point, thermal degradation temperature, heat of fusion, bonding structure and the contact angle of the polymer, respectively. These structural changes are explained with the supporting theory. |
format |
article |
author |
Paramane Ashish Sharad K. Sathish Kumar |
author_facet |
Paramane Ashish Sharad K. Sathish Kumar |
author_sort |
Paramane Ashish Sharad |
title |
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
title_short |
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
title_full |
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
title_fullStr |
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
title_full_unstemmed |
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study |
title_sort |
application of surface-modified xlpe nanocomposites for electrical insulation- partial discharge and morphological study |
publisher |
Taylor & Francis Group |
publishDate |
2017 |
url |
https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa4556 |
work_keys_str_mv |
AT paramaneashishsharad applicationofsurfacemodifiedxlpenanocompositesforelectricalinsulationpartialdischargeandmorphologicalstudy AT ksathishkumar applicationofsurfacemodifiedxlpenanocompositesforelectricalinsulationpartialdischargeandmorphologicalstudy |
_version_ |
1718398425180930048 |