Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study

This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation margi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paramane Ashish Sharad, K. Sathish Kumar
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2017
Materias:
Acceso en línea:https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa4556
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8ed1cb4c4b644ae9b9c16cb63afa4556
record_format dspace
spelling oai:doaj.org-article:8ed1cb4c4b644ae9b9c16cb63afa45562021-12-02T08:43:35ZApplication of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study2055-03242055-033210.1080/20550324.2017.1325987https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa45562017-01-01T00:00:00Zhttp://dx.doi.org/10.1080/20550324.2017.1325987https://doaj.org/toc/2055-0324https://doaj.org/toc/2055-0332This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation marginally. Octylsilane surface-modified XLPE/silica nano 3 wt % exhibits the lowest PD activity with highest discharge inception voltage and breakdown voltage. Also, the issue of change in the polymer structure due to the addition of nanofillers is reported here. The differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR), and contact angle measurement study conducted suggests that the addition of nanosilica leads to the change in the melting point, thermal degradation temperature, heat of fusion, bonding structure and the contact angle of the polymer, respectively. These structural changes are explained with the supporting theory.Paramane Ashish SharadK. Sathish KumarTaylor & Francis GrouparticleCrosslinked polyethyleneNanocompositesElectrical insulationPartial dischargeMorphologySurface modificationMaterials of engineering and construction. Mechanics of materialsTA401-492Polymers and polymer manufactureTP1080-1185ENNanocomposites, Vol 3, Iss 1, Pp 30-41 (2017)
institution DOAJ
collection DOAJ
language EN
topic Crosslinked polyethylene
Nanocomposites
Electrical insulation
Partial discharge
Morphology
Surface modification
Materials of engineering and construction. Mechanics of materials
TA401-492
Polymers and polymer manufacture
TP1080-1185
spellingShingle Crosslinked polyethylene
Nanocomposites
Electrical insulation
Partial discharge
Morphology
Surface modification
Materials of engineering and construction. Mechanics of materials
TA401-492
Polymers and polymer manufacture
TP1080-1185
Paramane Ashish Sharad
K. Sathish Kumar
Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
description This paper investigates partial discharge (PD) characteristics of crosslinked polyethylene (XLPE) nanocomposites for unmodified, agglomerated, and Octylsilane-modified silica nanofillers (nano 1, 2, 3, 4, 5, 10 wt %) case. The surface modification of nanofiller helps to reduce the PD formation marginally. Octylsilane surface-modified XLPE/silica nano 3 wt % exhibits the lowest PD activity with highest discharge inception voltage and breakdown voltage. Also, the issue of change in the polymer structure due to the addition of nanofillers is reported here. The differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), fourier transform infrared (FTIR), and contact angle measurement study conducted suggests that the addition of nanosilica leads to the change in the melting point, thermal degradation temperature, heat of fusion, bonding structure and the contact angle of the polymer, respectively. These structural changes are explained with the supporting theory.
format article
author Paramane Ashish Sharad
K. Sathish Kumar
author_facet Paramane Ashish Sharad
K. Sathish Kumar
author_sort Paramane Ashish Sharad
title Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
title_short Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
title_full Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
title_fullStr Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
title_full_unstemmed Application of surface-modified XLPE nanocomposites for electrical insulation- partial discharge and morphological study
title_sort application of surface-modified xlpe nanocomposites for electrical insulation- partial discharge and morphological study
publisher Taylor & Francis Group
publishDate 2017
url https://doaj.org/article/8ed1cb4c4b644ae9b9c16cb63afa4556
work_keys_str_mv AT paramaneashishsharad applicationofsurfacemodifiedxlpenanocompositesforelectricalinsulationpartialdischargeandmorphologicalstudy
AT ksathishkumar applicationofsurfacemodifiedxlpenanocompositesforelectricalinsulationpartialdischargeandmorphologicalstudy
_version_ 1718398425180930048