Entity Linking for the Semantic Annotation of Italian Tweets
Linking entity mentions in Italian tweets to concepts in a knowledge base is a challenging task, due to the short and noisy nature of these short messages and the lack of specific resources for Italian. This paper proposes an adaptation of a general purpose Named Entity Linking algorithm, which expl...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8ef44d22af2a4b4eaf544fa37e911a23 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8ef44d22af2a4b4eaf544fa37e911a23 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8ef44d22af2a4b4eaf544fa37e911a232021-12-02T09:52:33ZEntity Linking for the Semantic Annotation of Italian Tweets2499-455310.4000/ijcol.362https://doaj.org/article/8ef44d22af2a4b4eaf544fa37e911a232016-06-01T00:00:00Zhttp://journals.openedition.org/ijcol/362https://doaj.org/toc/2499-4553Linking entity mentions in Italian tweets to concepts in a knowledge base is a challenging task, due to the short and noisy nature of these short messages and the lack of specific resources for Italian. This paper proposes an adaptation of a general purpose Named Entity Linking algorithm, which exploits the similarity measure computed over a Distributional Semantic Model, in the context of Italian tweets. In order to evaluate the proposed algorithm, we introduce a new dataset of tweets for entity linking that we have developed specifically for the Italian language.Pierpaolo BasileGiovanni SemeraroAnnalina CaputoAccademia University PressarticleSocial SciencesHComputational linguistics. Natural language processingP98-98.5ENIJCoL, Vol 2, Iss 1, Pp 87-99 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Social Sciences H Computational linguistics. Natural language processing P98-98.5 |
spellingShingle |
Social Sciences H Computational linguistics. Natural language processing P98-98.5 Pierpaolo Basile Giovanni Semeraro Annalina Caputo Entity Linking for the Semantic Annotation of Italian Tweets |
description |
Linking entity mentions in Italian tweets to concepts in a knowledge base is a challenging task, due to the short and noisy nature of these short messages and the lack of specific resources for Italian. This paper proposes an adaptation of a general purpose Named Entity Linking algorithm, which exploits the similarity measure computed over a Distributional Semantic Model, in the context of Italian tweets. In order to evaluate the proposed algorithm, we introduce a new dataset of tweets for entity linking that we have developed specifically for the Italian language. |
format |
article |
author |
Pierpaolo Basile Giovanni Semeraro Annalina Caputo |
author_facet |
Pierpaolo Basile Giovanni Semeraro Annalina Caputo |
author_sort |
Pierpaolo Basile |
title |
Entity Linking for the Semantic Annotation of Italian Tweets |
title_short |
Entity Linking for the Semantic Annotation of Italian Tweets |
title_full |
Entity Linking for the Semantic Annotation of Italian Tweets |
title_fullStr |
Entity Linking for the Semantic Annotation of Italian Tweets |
title_full_unstemmed |
Entity Linking for the Semantic Annotation of Italian Tweets |
title_sort |
entity linking for the semantic annotation of italian tweets |
publisher |
Accademia University Press |
publishDate |
2016 |
url |
https://doaj.org/article/8ef44d22af2a4b4eaf544fa37e911a23 |
work_keys_str_mv |
AT pierpaolobasile entitylinkingforthesemanticannotationofitaliantweets AT giovannisemeraro entitylinkingforthesemanticannotationofitaliantweets AT annalinacaputo entitylinkingforthesemanticannotationofitaliantweets |
_version_ |
1718397957745672192 |