Evaluation and comparison number of gingival fibroblast and osteosarcoma cell (MG-63 cell line) adhesive to mocugraft, alloderm, and collagen membrane with or without advanced platelet-rich fibrin

Background: The tissue engineering has recently shown a significant progress in the fields of membranes and biosynthetic materials. Advanced platelet-rich fibrin (A-PRF) contains functional molecules that have newly shown great interest in regenerative therapies. The purpose of this study was to eva...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bentol Hoda Reisie, Shirin Zahra Farhad, Shirin Amini Sadeh
Formato: article
Lenguaje:EN
Publicado: Wolters Kluwer Medknow Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/8ef82189a68540c593befca07a17eea1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: The tissue engineering has recently shown a significant progress in the fields of membranes and biosynthetic materials. Advanced platelet-rich fibrin (A-PRF) contains functional molecules that have newly shown great interest in regenerative therapies. The purpose of this study was to evaluate the effect of A-PRF on the adhesion of gingival fibroblast cells and osteosarcoma cells to different membranes.Materials and Methods: In this experimental in vitro study, three collagen, alloderm, and mucograft membranes were studied, which were cut into four 5 mm × 5 mm pieces and placed in the bottom of a 24-well culture medium. One milliliter of A-PRF was added to two wells from each group and the other two wells remained without A-PRF. The gingival fibroblasts and osteosarcoma cells were individually added to each well. The cell adhesion was studied using an electron microscope after 24 h. The data were analyzed by independent t-test, one-way analysis of variance, and least significant difference test.Results: In the presence of A-PRF, there was a significant higher osteoblast adhesion to collagen membrane compared to alloderm and mucograft membranes (P < 0.001). In the absence of A-PRF, adhesion of osteoblasts to collagen membrane was significantly higher than alloderm and mucograft (P = 0.019). Moreover, in the presence of A-PRF, fibroblast adhesion to collagen membrane was significantly higher than alloderm and mucograft membranes (P < 0.001). Furthermore, in the absence of A-PRF, no significant difference was found among the study groups (P = 0.830).Conclusion: A-PRF was effective on fibroblast adhesion to the collagen membrane, which is similar to its absence. A-PRF was also found to be very effective on the adhesion of fibroblast cells to the collagen membrane, and in its absence, even less adhesion was observed compared to the other membranes. The presence or absence of A-PRF showed no significant differences in both cells' adhesion for alloderm and mucograft membranes.