Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable chara...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b3820510 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f0a2c9b4eb04d5ea7ff7880b3820510 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f0a2c9b4eb04d5ea7ff7880b38205102021-11-11T18:19:02ZPerturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product10.3390/math92127752227-7390https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b38205102021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2775https://doaj.org/toc/2227-7390Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable character of the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a bounded linear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mo>:</mo><mi mathvariant="script">X</mi><mo>→</mo><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, under commuting perturbations that are Riesz, compact, algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> from the tensorial factors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> to its tensor product.Elvis AponteJosé SanabriaLuis VásquezMDPI AGarticlesemi-Fredholm operatorproperty <i>(V<sub>E</sub>)</i>commuting perturbationstensor productMathematicsQA1-939ENMathematics, Vol 9, Iss 2775, p 2775 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
semi-Fredholm operator property <i>(V<sub>E</sub>)</i> commuting perturbations tensor product Mathematics QA1-939 |
spellingShingle |
semi-Fredholm operator property <i>(V<sub>E</sub>)</i> commuting perturbations tensor product Mathematics QA1-939 Elvis Aponte José Sanabria Luis Vásquez Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
description |
Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable character of the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a bounded linear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mo>:</mo><mi mathvariant="script">X</mi><mo>→</mo><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, under commuting perturbations that are Riesz, compact, algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> from the tensorial factors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> to its tensor product. |
format |
article |
author |
Elvis Aponte José Sanabria Luis Vásquez |
author_facet |
Elvis Aponte José Sanabria Luis Vásquez |
author_sort |
Elvis Aponte |
title |
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
title_short |
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
title_full |
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
title_fullStr |
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
title_full_unstemmed |
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product |
title_sort |
perturbation theory for property (<i>v</i><i><sub>e</sub></i>) and tensor product |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b3820510 |
work_keys_str_mv |
AT elvisaponte perturbationtheoryforpropertyiviisubesubiandtensorproduct AT josesanabria perturbationtheoryforpropertyiviisubesubiandtensorproduct AT luisvasquez perturbationtheoryforpropertyiviisubesubiandtensorproduct |
_version_ |
1718431897959268352 |