Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product

Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elvis Aponte, José Sanabria, Luis Vásquez
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b3820510
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f0a2c9b4eb04d5ea7ff7880b3820510
record_format dspace
spelling oai:doaj.org-article:8f0a2c9b4eb04d5ea7ff7880b38205102021-11-11T18:19:02ZPerturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product10.3390/math92127752227-7390https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b38205102021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2775https://doaj.org/toc/2227-7390Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable character of the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a bounded linear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mo>:</mo><mi mathvariant="script">X</mi><mo>→</mo><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, under commuting perturbations that are Riesz, compact, algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> from the tensorial factors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> to its tensor product.Elvis AponteJosé SanabriaLuis VásquezMDPI AGarticlesemi-Fredholm operatorproperty <i>(V<sub>E</sub>)</i>commuting perturbationstensor productMathematicsQA1-939ENMathematics, Vol 9, Iss 2775, p 2775 (2021)
institution DOAJ
collection DOAJ
language EN
topic semi-Fredholm operator
property <i>(V<sub>E</sub>)</i>
commuting perturbations
tensor product
Mathematics
QA1-939
spellingShingle semi-Fredholm operator
property <i>(V<sub>E</sub>)</i>
commuting perturbations
tensor product
Mathematics
QA1-939
Elvis Aponte
José Sanabria
Luis Vásquez
Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
description Given a complex Banach space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">X</mi></semantics></math></inline-formula>, we investigate the stable character of the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for a bounded linear operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">T</mi><mo>:</mo><mi mathvariant="script">X</mi><mo>→</mo><mi mathvariant="script">X</mi></mrow></semantics></math></inline-formula>, under commuting perturbations that are Riesz, compact, algebraic and hereditarily polaroid. We also analyze sufficient conditions that allow the transfer of property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>V</mi><mi>E</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> from the tensorial factors <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> to its tensor product.
format article
author Elvis Aponte
José Sanabria
Luis Vásquez
author_facet Elvis Aponte
José Sanabria
Luis Vásquez
author_sort Elvis Aponte
title Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
title_short Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
title_full Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
title_fullStr Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
title_full_unstemmed Perturbation Theory for Property (<i>V</i><i><sub>E</sub></i>) and Tensor Product
title_sort perturbation theory for property (<i>v</i><i><sub>e</sub></i>) and tensor product
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/8f0a2c9b4eb04d5ea7ff7880b3820510
work_keys_str_mv AT elvisaponte perturbationtheoryforpropertyiviisubesubiandtensorproduct
AT josesanabria perturbationtheoryforpropertyiviisubesubiandtensorproduct
AT luisvasquez perturbationtheoryforpropertyiviisubesubiandtensorproduct
_version_ 1718431897959268352