De novo generation of hit-like molecules from gene expression signatures using artificial intelligence

High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles.

Guardado en:
Detalles Bibliográficos
Autores principales: Oscar Méndez-Lucio, Benoit Baillif, Djork-Arné Clevert, David Rouquié, Joerg Wichard
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/8f29fb81be1743d6927814a8642026b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f29fb81be1743d6927814a8642026b4
record_format dspace
spelling oai:doaj.org-article:8f29fb81be1743d6927814a8642026b42021-12-02T15:39:10ZDe novo generation of hit-like molecules from gene expression signatures using artificial intelligence10.1038/s41467-019-13807-w2041-1723https://doaj.org/article/8f29fb81be1743d6927814a8642026b42020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13807-whttps://doaj.org/toc/2041-1723High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles.Oscar Méndez-LucioBenoit BaillifDjork-Arné ClevertDavid RouquiéJoerg WichardNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Oscar Méndez-Lucio
Benoit Baillif
Djork-Arné Clevert
David Rouquié
Joerg Wichard
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
description High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles.
format article
author Oscar Méndez-Lucio
Benoit Baillif
Djork-Arné Clevert
David Rouquié
Joerg Wichard
author_facet Oscar Méndez-Lucio
Benoit Baillif
Djork-Arné Clevert
David Rouquié
Joerg Wichard
author_sort Oscar Méndez-Lucio
title De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
title_short De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
title_full De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
title_fullStr De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
title_full_unstemmed De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
title_sort de novo generation of hit-like molecules from gene expression signatures using artificial intelligence
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/8f29fb81be1743d6927814a8642026b4
work_keys_str_mv AT oscarmendezlucio denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence
AT benoitbaillif denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence
AT djorkarneclevert denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence
AT davidrouquie denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence
AT joergwichard denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence
_version_ 1718386002938036224