De novo generation of hit-like molecules from gene expression signatures using artificial intelligence
High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f29fb81be1743d6927814a8642026b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f29fb81be1743d6927814a8642026b4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f29fb81be1743d6927814a8642026b42021-12-02T15:39:10ZDe novo generation of hit-like molecules from gene expression signatures using artificial intelligence10.1038/s41467-019-13807-w2041-1723https://doaj.org/article/8f29fb81be1743d6927814a8642026b42020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13807-whttps://doaj.org/toc/2041-1723High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles.Oscar Méndez-LucioBenoit BaillifDjork-Arné ClevertDavid RouquiéJoerg WichardNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Oscar Méndez-Lucio Benoit Baillif Djork-Arné Clevert David Rouquié Joerg Wichard De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
description |
High quality hit identification remains a considerable challenge in de novo drug design. Here, the authors train a generative adversarial network with transcriptome profiles induced by a large set of compounds, enabling it to design molecules that are likely to induce desired expression profiles. |
format |
article |
author |
Oscar Méndez-Lucio Benoit Baillif Djork-Arné Clevert David Rouquié Joerg Wichard |
author_facet |
Oscar Méndez-Lucio Benoit Baillif Djork-Arné Clevert David Rouquié Joerg Wichard |
author_sort |
Oscar Méndez-Lucio |
title |
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
title_short |
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
title_full |
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
title_fullStr |
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
title_full_unstemmed |
De novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
title_sort |
de novo generation of hit-like molecules from gene expression signatures using artificial intelligence |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/8f29fb81be1743d6927814a8642026b4 |
work_keys_str_mv |
AT oscarmendezlucio denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence AT benoitbaillif denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence AT djorkarneclevert denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence AT davidrouquie denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence AT joergwichard denovogenerationofhitlikemoleculesfromgeneexpressionsignaturesusingartificialintelligence |
_version_ |
1718386002938036224 |