Overcoming the limitations of patch-based learning to detect cancer in whole slide images
Abstract Whole slide images (WSIs) pose unique challenges when training deep learning models. They are very large which makes it necessary to break each image down into smaller patches for analysis, image features have to be extracted at multiple scales in order to capture both detail and context, a...
Guardado en:
Autores principales: | Ozan Ciga, Tony Xu, Sharon Nofech-Mozes, Shawna Noy, Fang-I Lu, Anne L. Martel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f311b2bd8d8422bbe478508c0c6ee33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification
por: Mohammad Peikari, et al.
Publicado: (2018) -
Self supervised contrastive learning for digital histopathology
por: Ozan Ciga, et al.
Publicado: (2022) -
A generalized deep learning framework for whole-slide image segmentation and analysis
por: Mahendra Khened, et al.
Publicado: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Charlotte Syrykh, et al.
Publicado: (2020) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021)