The Injectivity Theorem on a Non-Compact Kähler Manifold
In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f38354da8f248dcbedf4ad73a52aa15 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f38354da8f248dcbedf4ad73a52aa152021-11-25T19:07:43ZThe Injectivity Theorem on a Non-Compact Kähler Manifold10.3390/sym131122222073-8994https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa152021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2222https://doaj.org/toc/2073-8994In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds with hyperbolicity, such as symmetric spaces, bounded symmetric domains in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>, hyperconvex bounded domains, and so on.Jingcao WuMDPI AGarticlenon-compact Kähler manifoldHodge decompositionharmonic differential formHilbert spaceMathematicsQA1-939ENSymmetry, Vol 13, Iss 2222, p 2222 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
non-compact Kähler manifold Hodge decomposition harmonic differential form Hilbert space Mathematics QA1-939 |
spellingShingle |
non-compact Kähler manifold Hodge decomposition harmonic differential form Hilbert space Mathematics QA1-939 Jingcao Wu The Injectivity Theorem on a Non-Compact Kähler Manifold |
description |
In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds with hyperbolicity, such as symmetric spaces, bounded symmetric domains in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>, hyperconvex bounded domains, and so on. |
format |
article |
author |
Jingcao Wu |
author_facet |
Jingcao Wu |
author_sort |
Jingcao Wu |
title |
The Injectivity Theorem on a Non-Compact Kähler Manifold |
title_short |
The Injectivity Theorem on a Non-Compact Kähler Manifold |
title_full |
The Injectivity Theorem on a Non-Compact Kähler Manifold |
title_fullStr |
The Injectivity Theorem on a Non-Compact Kähler Manifold |
title_full_unstemmed |
The Injectivity Theorem on a Non-Compact Kähler Manifold |
title_sort |
injectivity theorem on a non-compact kähler manifold |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa15 |
work_keys_str_mv |
AT jingcaowu theinjectivitytheoremonanoncompactkahlermanifold AT jingcaowu injectivitytheoremonanoncompactkahlermanifold |
_version_ |
1718410289985093632 |