The Injectivity Theorem on a Non-Compact Kähler Manifold

In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jingcao Wu
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa15
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f38354da8f248dcbedf4ad73a52aa15
record_format dspace
spelling oai:doaj.org-article:8f38354da8f248dcbedf4ad73a52aa152021-11-25T19:07:43ZThe Injectivity Theorem on a Non-Compact Kähler Manifold10.3390/sym131122222073-8994https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa152021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2222https://doaj.org/toc/2073-8994In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds with hyperbolicity, such as symmetric spaces, bounded symmetric domains in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>, hyperconvex bounded domains, and so on.Jingcao WuMDPI AGarticlenon-compact Kähler manifoldHodge decompositionharmonic differential formHilbert spaceMathematicsQA1-939ENSymmetry, Vol 13, Iss 2222, p 2222 (2021)
institution DOAJ
collection DOAJ
language EN
topic non-compact Kähler manifold
Hodge decomposition
harmonic differential form
Hilbert space
Mathematics
QA1-939
spellingShingle non-compact Kähler manifold
Hodge decomposition
harmonic differential form
Hilbert space
Mathematics
QA1-939
Jingcao Wu
The Injectivity Theorem on a Non-Compact Kähler Manifold
description In this paper, we establish an injectivity theorem on a weakly pseudoconvex Kähler manifold <i>X</i> with negative sectional curvature. For this purpose, we develop the harmonic theory in this circumstance. The negative sectional curvature condition is usually satisfied by the manifolds with hyperbolicity, such as symmetric spaces, bounded symmetric domains in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>, hyperconvex bounded domains, and so on.
format article
author Jingcao Wu
author_facet Jingcao Wu
author_sort Jingcao Wu
title The Injectivity Theorem on a Non-Compact Kähler Manifold
title_short The Injectivity Theorem on a Non-Compact Kähler Manifold
title_full The Injectivity Theorem on a Non-Compact Kähler Manifold
title_fullStr The Injectivity Theorem on a Non-Compact Kähler Manifold
title_full_unstemmed The Injectivity Theorem on a Non-Compact Kähler Manifold
title_sort injectivity theorem on a non-compact kähler manifold
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/8f38354da8f248dcbedf4ad73a52aa15
work_keys_str_mv AT jingcaowu theinjectivitytheoremonanoncompactkahlermanifold
AT jingcaowu injectivitytheoremonanoncompactkahlermanifold
_version_ 1718410289985093632