COVID-19 early detection for imbalanced or low number of data using a regularized cost-sensitive CapsNet
Abstract With the presence of novel coronavirus disease at the end of 2019, several approaches were proposed to help physicians detect the disease, such as using deep learning to recognize lung involvement based on the pattern of pneumonia. These approaches rely on analyzing the CT images and explor...
Guardado en:
Autores principales: | Malihe Javidi, Saeid Abbaasi, Sara Naybandi Atashi, Mahdi Jampour |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f3e7cd6f773442787fa54a3fb9ca5e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient-CapsNet: capsule network with self-attention routing
por: Vittorio Mazzia, et al.
Publicado: (2021) -
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
por: Minzhe Yu, et al.
Publicado: (2021) -
A System for the Detection of Polyphonic Sound on a University Campus Based on CapsNet-RNN
por: Liyan Luo, et al.
Publicado: (2021) -
Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
por: Hao Li, et al.
Publicado: (2021) -
MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
por: Lifei Wang, et al.
Publicado: (2021)