Biological relevance of computationally predicted pathogenicity of noncoding variants

Researchers can make use of a variety of computational tools to prioritize genetic variants and predict their pathogenicity. Here, the authors evaluate the performance of six of these tools in three typical biological tasks and find generally low concordance of predictions and experimental confirmat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li Liu, Maxwell D. Sanderford, Ravi Patel, Pramod Chandrashekar, Greg Gibson, Sudhir Kumar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/8f40bef121824d3e8e8c9116ae4aae2d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f40bef121824d3e8e8c9116ae4aae2d
record_format dspace
spelling oai:doaj.org-article:8f40bef121824d3e8e8c9116ae4aae2d2021-12-02T14:35:30ZBiological relevance of computationally predicted pathogenicity of noncoding variants10.1038/s41467-018-08270-y2041-1723https://doaj.org/article/8f40bef121824d3e8e8c9116ae4aae2d2019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-08270-yhttps://doaj.org/toc/2041-1723Researchers can make use of a variety of computational tools to prioritize genetic variants and predict their pathogenicity. Here, the authors evaluate the performance of six of these tools in three typical biological tasks and find generally low concordance of predictions and experimental confirmation.Li LiuMaxwell D. SanderfordRavi PatelPramod ChandrashekarGreg GibsonSudhir KumarNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Li Liu
Maxwell D. Sanderford
Ravi Patel
Pramod Chandrashekar
Greg Gibson
Sudhir Kumar
Biological relevance of computationally predicted pathogenicity of noncoding variants
description Researchers can make use of a variety of computational tools to prioritize genetic variants and predict their pathogenicity. Here, the authors evaluate the performance of six of these tools in three typical biological tasks and find generally low concordance of predictions and experimental confirmation.
format article
author Li Liu
Maxwell D. Sanderford
Ravi Patel
Pramod Chandrashekar
Greg Gibson
Sudhir Kumar
author_facet Li Liu
Maxwell D. Sanderford
Ravi Patel
Pramod Chandrashekar
Greg Gibson
Sudhir Kumar
author_sort Li Liu
title Biological relevance of computationally predicted pathogenicity of noncoding variants
title_short Biological relevance of computationally predicted pathogenicity of noncoding variants
title_full Biological relevance of computationally predicted pathogenicity of noncoding variants
title_fullStr Biological relevance of computationally predicted pathogenicity of noncoding variants
title_full_unstemmed Biological relevance of computationally predicted pathogenicity of noncoding variants
title_sort biological relevance of computationally predicted pathogenicity of noncoding variants
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/8f40bef121824d3e8e8c9116ae4aae2d
work_keys_str_mv AT liliu biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
AT maxwelldsanderford biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
AT ravipatel biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
AT pramodchandrashekar biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
AT greggibson biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
AT sudhirkumar biologicalrelevanceofcomputationallypredictedpathogenicityofnoncodingvariants
_version_ 1718391143508475904