Biological relevance of computationally predicted pathogenicity of noncoding variants
Researchers can make use of a variety of computational tools to prioritize genetic variants and predict their pathogenicity. Here, the authors evaluate the performance of six of these tools in three typical biological tasks and find generally low concordance of predictions and experimental confirmat...
Guardado en:
Autores principales: | Li Liu, Maxwell D. Sanderford, Ravi Patel, Pramod Chandrashekar, Greg Gibson, Sudhir Kumar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f40bef121824d3e8e8c9116ae4aae2d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying noncoding risk variants using disease-relevant gene regulatory networks
por: Long Gao, et al.
Publicado: (2018) -
Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance
por: Kerstin Hoppe, et al.
Publicado: (2021) -
The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways
por: Ming-Che Kuo, et al.
Publicado: (2021) -
MVP predicts the pathogenicity of missense variants by deep learning
por: Hongjian Qi, et al.
Publicado: (2021) -
Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants
por: Paulina Maria Nawrocka, et al.
Publicado: (2021)