Biological relevance of computationally predicted pathogenicity of noncoding variants
Researchers can make use of a variety of computational tools to prioritize genetic variants and predict their pathogenicity. Here, the authors evaluate the performance of six of these tools in three typical biological tasks and find generally low concordance of predictions and experimental confirmat...
Enregistré dans:
Auteurs principaux: | Li Liu, Maxwell D. Sanderford, Ravi Patel, Pramod Chandrashekar, Greg Gibson, Sudhir Kumar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8f40bef121824d3e8e8c9116ae4aae2d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identifying noncoding risk variants using disease-relevant gene regulatory networks
par: Long Gao, et autres
Publié: (2018) -
Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance
par: Kerstin Hoppe, et autres
Publié: (2021) -
The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways
par: Ming-Che Kuo, et autres
Publié: (2021) -
MVP predicts the pathogenicity of missense variants by deep learning
par: Hongjian Qi, et autres
Publié: (2021) -
Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants
par: Paulina Maria Nawrocka, et autres
Publié: (2021)