T-DFNN: An Incremental Learning Algorithm for Intrusion Detection Systems
Machine learning has recently become a popular algorithm in building reliable intrusion detection systems (IDSs). However, most of the models are static and trained using datasets containing all targeted intrusions. If new intrusions emerge, these trained models must be retrained using old and new d...
Guardado en:
Autores principales: | Mahendra Data, Masayoshi Aritsugi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f4706cd1bd04b1798cb58e41fd88fe9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SPACE: Structured Compression and Sharing of Representational Space for Continual Learning
por: Gobinda Saha, et al.
Publicado: (2021) -
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection
por: Shivang Agarwal, et al.
Publicado: (2022) -
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
por: Robson V. Mendonca, et al.
Publicado: (2021) -
Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus
por: Tarek Moulahi, et al.
Publicado: (2021) -
Internet of Drones Intrusion Detection Using Deep Learning
por: Rabie A. Ramadan, et al.
Publicado: (2021)