Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations.
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the mole...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f4e2159d42e41bf8158d242fb172797 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f4e2159d42e41bf8158d242fb172797 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f4e2159d42e41bf8158d242fb1727972021-12-02T19:57:23ZIntegrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations.1553-734X1553-735810.1371/journal.pcbi.1009234https://doaj.org/article/8f4e2159d42e41bf8158d242fb1727972021-07-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009234https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.Pedro de AtauriMíriam Tarrado-CastellarnauJosep Tarragó-CeladaCarles FoguetEffrosyni KarakitsouJosep Joan CentellesMarta CascantePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 7, p e1009234 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Pedro de Atauri Míriam Tarrado-Castellarnau Josep Tarragó-Celada Carles Foguet Effrosyni Karakitsou Josep Joan Centelles Marta Cascante Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
description |
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response. |
format |
article |
author |
Pedro de Atauri Míriam Tarrado-Castellarnau Josep Tarragó-Celada Carles Foguet Effrosyni Karakitsou Josep Joan Centelles Marta Cascante |
author_facet |
Pedro de Atauri Míriam Tarrado-Castellarnau Josep Tarragó-Celada Carles Foguet Effrosyni Karakitsou Josep Joan Centelles Marta Cascante |
author_sort |
Pedro de Atauri |
title |
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
title_short |
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
title_full |
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
title_fullStr |
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
title_full_unstemmed |
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
title_sort |
integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/8f4e2159d42e41bf8158d242fb172797 |
work_keys_str_mv |
AT pedrodeatauri integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT miriamtarradocastellarnau integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT joseptarragocelada integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT carlesfoguet integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT effrosynikarakitsou integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT josepjoancentelles integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations AT martacascante integratingsystemicandmolecularlevelstoinferkeydriverssustainingmetabolicadaptations |
_version_ |
1718375852157173760 |