Fast Sequential Clustering in Riemannian Manifolds for Dynamic and Time-Series-Annotated Multilayer Networks
This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion follows a bottom-up path, starting from feature extr...
Guardado en:
Autores principales: | Cong Ye, Konstantinos Slavakis, Johan Nakuci, Sarah F. Muldoon, John Medaglia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f51f7bb7a254092b4f80807399cb5a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Anti-invariant ξ ⊥ -Riemannian Submersions From Hyperbolic β-Kenmotsu Manifolds
por: Danish Siddiqi,Mohd, et al.
Publicado: (2018) -
On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
por: Blaga Adara M., et al.
Publicado: (2019) -
ON SOME INFINITESIMAL AUTOMORPHISMS OF RIEMANNIAN FOLIATION
por: CHAOUCH,MOHAMET AlÍ, et al.
Publicado: (2007) -
On Weak concircular Symmetries of Trans-Sasakian manifolds
por: Hui,Shyamal Kumar
Publicado: (2011) -
Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals
por: Selina C. Wriessnegger, et al.
Publicado: (2021)