A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios
An Eulerian method to numerically solve incompressible bifluid problems with high density ratio is presented. This method can be considered as an improvement of the Ghost Fluid method, with the specificity of a sharp second-order numerical scheme for the spatial resolution of the discontinuous ellip...
Guardado en:
Autores principales: | Michel Bergmann, Lisl Weynans |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f65e18989604e7dbb77d0d4efba2ceb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Flow Structures Identification through Proper Orthogonal Decomposition: The Flow around Two Distinct Cylinders
por: Ângela M. Ribau, et al.
Publicado: (2021) -
The Role of the Double-Layer Potential in Regularised Stokeslet Models of Self-Propulsion
por: David J. Smith, et al.
Publicado: (2021) -
Methane hydrate thermodynamic phase stability predictions in the presence of salt inhibitors and their mixture for offshore operations
por: Venkata Ramana Avula, et al.
Publicado: (2021) -
Study of CO2 solubility in bicyclic ionic liquids by thermodynamic properties and FT-IR spectroscopic analysis at T=(303.15 and 313.15) K
por: Venkatramana Losetty, et al.
Publicado: (2021) -
Influence of Particle Mass Fraction over the Turbulent Behaviour of an Incompressible Particle-Laden Flow
por: Carlos Alberto Duque-Daza, et al.
Publicado: (2021)