Robust dynamic community detection with applications to human brain functional networks

Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: L.-E. Martinet, M. A. Kramer, W. Viles, L. N. Perkins, E. Spencer, C. J. Chu, S. S. Cash, E. D. Kolaczyk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f59
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f7cd92cb2444562a9abbe7affa09f59
record_format dspace
spelling oai:doaj.org-article:8f7cd92cb2444562a9abbe7affa09f592021-12-02T17:51:04ZRobust dynamic community detection with applications to human brain functional networks10.1038/s41467-020-16285-72041-1723https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f592020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16285-7https://doaj.org/toc/2041-1723Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time.L.-E. MartinetM. A. KramerW. VilesL. N. PerkinsE. SpencerC. J. ChuS. S. CashE. D. KolaczykNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
L.-E. Martinet
M. A. Kramer
W. Viles
L. N. Perkins
E. Spencer
C. J. Chu
S. S. Cash
E. D. Kolaczyk
Robust dynamic community detection with applications to human brain functional networks
description Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time.
format article
author L.-E. Martinet
M. A. Kramer
W. Viles
L. N. Perkins
E. Spencer
C. J. Chu
S. S. Cash
E. D. Kolaczyk
author_facet L.-E. Martinet
M. A. Kramer
W. Viles
L. N. Perkins
E. Spencer
C. J. Chu
S. S. Cash
E. D. Kolaczyk
author_sort L.-E. Martinet
title Robust dynamic community detection with applications to human brain functional networks
title_short Robust dynamic community detection with applications to human brain functional networks
title_full Robust dynamic community detection with applications to human brain functional networks
title_fullStr Robust dynamic community detection with applications to human brain functional networks
title_full_unstemmed Robust dynamic community detection with applications to human brain functional networks
title_sort robust dynamic community detection with applications to human brain functional networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f59
work_keys_str_mv AT lemartinet robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT makramer robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT wviles robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT lnperkins robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT espencer robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT cjchu robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT sscash robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
AT edkolaczyk robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks
_version_ 1718379298822291456