Robust dynamic community detection with applications to human brain functional networks
Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communit...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f7cd92cb2444562a9abbe7affa09f59 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f7cd92cb2444562a9abbe7affa09f592021-12-02T17:51:04ZRobust dynamic community detection with applications to human brain functional networks10.1038/s41467-020-16285-72041-1723https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f592020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16285-7https://doaj.org/toc/2041-1723Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time.L.-E. MartinetM. A. KramerW. VilesL. N. PerkinsE. SpencerC. J. ChuS. S. CashE. D. KolaczykNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q L.-E. Martinet M. A. Kramer W. Viles L. N. Perkins E. Spencer C. J. Chu S. S. Cash E. D. Kolaczyk Robust dynamic community detection with applications to human brain functional networks |
description |
Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time. |
format |
article |
author |
L.-E. Martinet M. A. Kramer W. Viles L. N. Perkins E. Spencer C. J. Chu S. S. Cash E. D. Kolaczyk |
author_facet |
L.-E. Martinet M. A. Kramer W. Viles L. N. Perkins E. Spencer C. J. Chu S. S. Cash E. D. Kolaczyk |
author_sort |
L.-E. Martinet |
title |
Robust dynamic community detection with applications to human brain functional networks |
title_short |
Robust dynamic community detection with applications to human brain functional networks |
title_full |
Robust dynamic community detection with applications to human brain functional networks |
title_fullStr |
Robust dynamic community detection with applications to human brain functional networks |
title_full_unstemmed |
Robust dynamic community detection with applications to human brain functional networks |
title_sort |
robust dynamic community detection with applications to human brain functional networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f59 |
work_keys_str_mv |
AT lemartinet robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT makramer robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT wviles robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT lnperkins robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT espencer robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT cjchu robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT sscash robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks AT edkolaczyk robustdynamiccommunitydetectionwithapplicationstohumanbrainfunctionalnetworks |
_version_ |
1718379298822291456 |