Robust dynamic community detection with applications to human brain functional networks
Understanding how brain networks evolve in time remains a challenge, with the potential for significant impact to human health and disease. Here, the authors introduce a new methodology to track dynamic functional networks that is robust to edge noise, and yields well-defined spatiotemporal communit...
Guardado en:
Autores principales: | L.-E. Martinet, M. A. Kramer, W. Viles, L. N. Perkins, E. Spencer, C. J. Chu, S. S. Cash, E. D. Kolaczyk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f7cd92cb2444562a9abbe7affa09f59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detecting network communities: an application to phylogenetic analysis.
por: Roberto F S Andrade, et al.
Publicado: (2011) -
Human seizures couple across spatial scales through travelling wave dynamics
por: L-E Martinet, et al.
Publicado: (2017) -
Brain network dynamics in high-functioning individuals with autism
por: Takamitsu Watanabe, et al.
Publicado: (2017) -
The dynamic functional core network of the human brain at rest
por: A. Kabbara, et al.
Publicado: (2017) -
Abnormal Brain Functional Network Dynamics in Acute CO Poisoning
por: Hongyi Zheng, et al.
Publicado: (2021)