Giant multiple caloric effects in charge transition ferrimagnet

Abstract Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technolo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yoshihisa Kosugi, Masato Goto, Zhenhong Tan, Daisuke Kan, Masahiko Isobe, Kenji Yoshii, Masaichiro Mizumaki, Asaya Fujita, Hidenori Takagi, Yuichi Shimakawa
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/8f8247d3514448548b25b2e3c52f085e
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu3Cr4O12 shows large multiple caloric effects at the first-order charge transition occurring around 190 K. Large latent heat and the corresponding isothermal entropy change, 28.2 J K−1 kg−1, can be utilized by applying both magnetic fields (a magnetocaloric effect) and pressure (a barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved in multiple ways.