Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus
Purpose Raised cerebral titers of acetylcholine have notable links with storage symptomatology related to lower urinary tract symptoms. The hippocampus contributes to the normal control of continence in the majority of instances (circuit 3). Owing to synaptic connections with other nerve cells, acet...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Korean Continence Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f9622dfe20f450ebeba7f460fe9a41b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8f9622dfe20f450ebeba7f460fe9a41b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8f9622dfe20f450ebeba7f460fe9a41b2021-11-30T04:10:48ZLiberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus2093-47772093-693110.5213/inj.2142350.175https://doaj.org/article/8f9622dfe20f450ebeba7f460fe9a41b2021-11-01T00:00:00Zhttp://www.einj.org/upload/pdf/inj-2142350-175.pdfhttps://doaj.org/toc/2093-4777https://doaj.org/toc/2093-6931Purpose Raised cerebral titers of acetylcholine have notable links with storage symptomatology related to lower urinary tract symptoms. The hippocampus contributes to the normal control of continence in the majority of instances (circuit 3). Owing to synaptic connections with other nerve cells, acetylcholine affects the micturition pathway via the liberation of additional cerebral neurotransmitters. Despite the fact that cerebral serotonin is a key inhibitor of reflex bladder muscle contractions, the influence of acetylcholine on its liberation is poorly delineated. The current research was conducted in order to explore the role of acetylcholine in serotonin liberation from sections of rat hippocampus in order to improve the comprehension of the relationship between cholinergic and serotonergic neurons. Methods Hippocampal sections from 6 mature male Sprague-Dawley rats were equilibrated over a 30-minute period in standard incubation medium so as to facilitate [3H]5-hydroxytryptamine (5-HT) uptake. The cerebral neurotransmitter, acetylcholine, was applied to the sections. Aliquots of drained medium solution were utilized in order to quantify the radioactivity associated with [3H]5-HT liberation; any alterations in this parameter were noted. Results When judged against the controls, [3H]5-HT liberation from the hippocampal sections remained unaltered following the administration of acetylcholine, implying that this agent has no inhibitory action on this process. Conclusions Serotonin liberation from murine hippocampal sections is unaffected by acetylcholine. It is postulated that the bladder micturition reflex responds to acetylcholine through its immediate cholinergic activity rather than by its influence on serotonin release. These pathways are a promising target for the design of de novo therapeutic agents.Jae Heon KimYoung Soo AhnYun Seob SongKorean Continence Societyarticleserotoninhippocampal slicesacetylcholineDiseases of the genitourinary system. UrologyRC870-923ENInternational Neurourology Journal, Vol 25, Iss Suppl 2, Pp S114-119 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
serotonin hippocampal slices acetylcholine Diseases of the genitourinary system. Urology RC870-923 |
spellingShingle |
serotonin hippocampal slices acetylcholine Diseases of the genitourinary system. Urology RC870-923 Jae Heon Kim Young Soo Ahn Yun Seob Song Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
description |
Purpose Raised cerebral titers of acetylcholine have notable links with storage symptomatology related to lower urinary tract symptoms. The hippocampus contributes to the normal control of continence in the majority of instances (circuit 3). Owing to synaptic connections with other nerve cells, acetylcholine affects the micturition pathway via the liberation of additional cerebral neurotransmitters. Despite the fact that cerebral serotonin is a key inhibitor of reflex bladder muscle contractions, the influence of acetylcholine on its liberation is poorly delineated. The current research was conducted in order to explore the role of acetylcholine in serotonin liberation from sections of rat hippocampus in order to improve the comprehension of the relationship between cholinergic and serotonergic neurons. Methods Hippocampal sections from 6 mature male Sprague-Dawley rats were equilibrated over a 30-minute period in standard incubation medium so as to facilitate [3H]5-hydroxytryptamine (5-HT) uptake. The cerebral neurotransmitter, acetylcholine, was applied to the sections. Aliquots of drained medium solution were utilized in order to quantify the radioactivity associated with [3H]5-HT liberation; any alterations in this parameter were noted. Results When judged against the controls, [3H]5-HT liberation from the hippocampal sections remained unaltered following the administration of acetylcholine, implying that this agent has no inhibitory action on this process. Conclusions Serotonin liberation from murine hippocampal sections is unaffected by acetylcholine. It is postulated that the bladder micturition reflex responds to acetylcholine through its immediate cholinergic activity rather than by its influence on serotonin release. These pathways are a promising target for the design of de novo therapeutic agents. |
format |
article |
author |
Jae Heon Kim Young Soo Ahn Yun Seob Song |
author_facet |
Jae Heon Kim Young Soo Ahn Yun Seob Song |
author_sort |
Jae Heon Kim |
title |
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
title_short |
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
title_full |
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
title_fullStr |
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
title_full_unstemmed |
Liberation of Serotonin Is Not Unaffected by Acetylcholine in Rat Hippocampus |
title_sort |
liberation of serotonin is not unaffected by acetylcholine in rat hippocampus |
publisher |
Korean Continence Society |
publishDate |
2021 |
url |
https://doaj.org/article/8f9622dfe20f450ebeba7f460fe9a41b |
work_keys_str_mv |
AT jaeheonkim liberationofserotoninisnotunaffectedbyacetylcholineinrathippocampus AT youngsooahn liberationofserotoninisnotunaffectedbyacetylcholineinrathippocampus AT yunseobsong liberationofserotoninisnotunaffectedbyacetylcholineinrathippocampus |
_version_ |
1718406875216609280 |