Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber

Heavy metal pollution has emerged as one of the most serious environmental challenges facing the world today. The removal of heavy metals from the effluent is of special environmental concern because of their toxicity and persistence in nature. This study presents the suitability of activated carbon...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Faith Cherono, Njenga Mburu, Beatrice Kakoi
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/8f9af40de18a41c58befc833f0b63aea
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8f9af40de18a41c58befc833f0b63aea
record_format dspace
spelling oai:doaj.org-article:8f9af40de18a41c58befc833f0b63aea2021-12-02T05:02:17ZAdsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber2405-844010.1016/j.heliyon.2021.e08254https://doaj.org/article/8f9af40de18a41c58befc833f0b63aea2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2405844021023574https://doaj.org/toc/2405-8440Heavy metal pollution has emerged as one of the most serious environmental challenges facing the world today. The removal of heavy metals from the effluent is of special environmental concern because of their toxicity and persistence in nature. This study presents the suitability of activated carbon from waste rubber tire as a low-cost adsorbent for multiple adsorption of copper, lead and zinc from wastewater. The adsorbent removed heavy metal ions effectively from solution medium in the order of copper > lead > Zinc. The adsorption process was rapid with all metals reaching equilibrium within 120 min. The optimum pH for Lead was achieved at 5 and 6 for copper and Zinc. The removal of heavy metals was discovered to increase with adsorbent dosage and contact time and reduced with initial concentration. The adsorption of multiple heavy metals was modeled using Freundlich and Langmuir adsorption isotherms to assess the experimental findings. The equilibrium data better fitted to the Langmuir isotherm with regression coefficient (R2) of 0.9831, 0.9992 and 0.9953 for lead, copper and zinc respectively. The maximum adsorption capacities (Qmax) at equilibrium were 9.6805 mg/g, 12.4378 mg/g and 4.9950 mg/g for Lead, Copper and Zinc respectively. The adsorption kinetics indicated that pseudo-second-order kinetic model described well the sorption mechanism for multiple adsorption of heavy metals with R2 of more than 0.99 for all metal ions. An empirical model for predicting and designing of a single batch adsorber for 95 % multiple heavy metal ion removal at any given initial heavy metal ion concentration and effluent volume was further developed using activated carbon from waste rubber tires. Waste rubber tire Activated carbon demonstrated an ability for the treatment of wastewater containing these heavy metals in multimetal solutions.Faith CheronoNjenga MburuBeatrice KakoiElsevierarticleMultipleAdsorptionHeavy metalActivated carbonWaste rubber tiresAdsorption isothermsScience (General)Q1-390Social sciences (General)H1-99ENHeliyon, Vol 7, Iss 11, Pp e08254- (2021)
institution DOAJ
collection DOAJ
language EN
topic Multiple
Adsorption
Heavy metal
Activated carbon
Waste rubber tires
Adsorption isotherms
Science (General)
Q1-390
Social sciences (General)
H1-99
spellingShingle Multiple
Adsorption
Heavy metal
Activated carbon
Waste rubber tires
Adsorption isotherms
Science (General)
Q1-390
Social sciences (General)
H1-99
Faith Cherono
Njenga Mburu
Beatrice Kakoi
Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
description Heavy metal pollution has emerged as one of the most serious environmental challenges facing the world today. The removal of heavy metals from the effluent is of special environmental concern because of their toxicity and persistence in nature. This study presents the suitability of activated carbon from waste rubber tire as a low-cost adsorbent for multiple adsorption of copper, lead and zinc from wastewater. The adsorbent removed heavy metal ions effectively from solution medium in the order of copper > lead > Zinc. The adsorption process was rapid with all metals reaching equilibrium within 120 min. The optimum pH for Lead was achieved at 5 and 6 for copper and Zinc. The removal of heavy metals was discovered to increase with adsorbent dosage and contact time and reduced with initial concentration. The adsorption of multiple heavy metals was modeled using Freundlich and Langmuir adsorption isotherms to assess the experimental findings. The equilibrium data better fitted to the Langmuir isotherm with regression coefficient (R2) of 0.9831, 0.9992 and 0.9953 for lead, copper and zinc respectively. The maximum adsorption capacities (Qmax) at equilibrium were 9.6805 mg/g, 12.4378 mg/g and 4.9950 mg/g for Lead, Copper and Zinc respectively. The adsorption kinetics indicated that pseudo-second-order kinetic model described well the sorption mechanism for multiple adsorption of heavy metals with R2 of more than 0.99 for all metal ions. An empirical model for predicting and designing of a single batch adsorber for 95 % multiple heavy metal ion removal at any given initial heavy metal ion concentration and effluent volume was further developed using activated carbon from waste rubber tires. Waste rubber tire Activated carbon demonstrated an ability for the treatment of wastewater containing these heavy metals in multimetal solutions.
format article
author Faith Cherono
Njenga Mburu
Beatrice Kakoi
author_facet Faith Cherono
Njenga Mburu
Beatrice Kakoi
author_sort Faith Cherono
title Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
title_short Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
title_full Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
title_fullStr Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
title_full_unstemmed Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
title_sort adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber
publisher Elsevier
publishDate 2021
url https://doaj.org/article/8f9af40de18a41c58befc833f0b63aea
work_keys_str_mv AT faithcherono adsorptionofleadcopperandzincinamultimetalaqueoussolutionbywasterubbertiresforthedesignofsinglebatchadsorber
AT njengamburu adsorptionofleadcopperandzincinamultimetalaqueoussolutionbywasterubbertiresforthedesignofsinglebatchadsorber
AT beatricekakoi adsorptionofleadcopperandzincinamultimetalaqueoussolutionbywasterubbertiresforthedesignofsinglebatchadsorber
_version_ 1718400777512288256