Incremental learning with SVM for multimodal classification of prostatic adenocarcinoma.
Robust detection of prostatic cancer is a challenge due to the multitude of variants and their representation in MR images. We propose a pattern recognition system with an incremental learning ensemble algorithm using support vector machines (SVM) tackling this problem employing multimodal MR images...
Guardado en:
Autores principales: | José Fernando García Molina, Lei Zheng, Metin Sertdemir, Dietmar J Dinter, Stefan Schönberg, Matthias Rädle |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8f9eb8535df6447e906a1a7b74306a2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Molecular classification of prostate adenocarcinoma by the integrated somatic mutation profiles and molecular network
por: Lei Yang, et al.
Publicado: (2017) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
por: Suwarno Liang
Publicado: (2021) -
Automatic epilepsy detection using fractal dimensions segmentation and GP–SVM classification
por: Jirka J, et al.
Publicado: (2018) -
A Classification Method of Network Ideological and Political Resources Using Improved SVM Algorithm
por: WenXia Wang
Publicado: (2021) -
Automatic classification of water samples using an optimized SVM model applied to cyclic voltammetry signals.
por: Hugo Italo Romero, et al.
Publicado: (2019)