Reliability of subsequent memory effects in children and adults: The good, the bad, and the hopeful
Functional MRI (fMRI) is a key tool for investigating neural underpinnings of cognitive development. Yet, in recent years, the reliability of fMRI effects has come into question and with it, the feasibility of using task-based fMRI to identify developmental changes related to cognition. Here, we inv...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8fa13f49f42149c8af5d75fa1c673a89 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Functional MRI (fMRI) is a key tool for investigating neural underpinnings of cognitive development. Yet, in recent years, the reliability of fMRI effects has come into question and with it, the feasibility of using task-based fMRI to identify developmental changes related to cognition. Here, we investigated the reliability of task-based fMRI activations with a widely used subsequent memory paradigm using two developmental samples: a cross-sectional sample (n = 85, age 8–25 years) and a test-retest sample (n = 24, one-month follow up, age 8–20 years). In the large cross-sectional sample, we found good to excellent group-level reliability when assessing activation patterns related to the encoding task and subsequent memory effects. In the test-retest sample, while group-level reliability was excellent, the consistency of activation patterns within individuals was low, particularly for subsequent memory effects. We observed consistent activation patterns in frontal, parietal, and occipital cortices, but comparatively lower test-retest reliability in subcortical regions and the hippocampus. Together, these findings highlight the limitations of interpreting task-based fMRI effects and the importance of incorporating reliability analyses in developmental studies. Leveraging larger and densely collected longitudinal data may help contribute to increased reproducibility and the accumulation of knowledge in developmental sciences. |
---|