Performance Enhancement of Photoconductive Antenna Using Saw-Toothed Plasmonic Contact Electrodes
A photoconductive logarithmic spiral antenna with saw-toothed plasmonic contact electrodes is proposed to provide a higher terahertz radiation compared with the conventional photoconductive antenna (PCA). The use of saw-toothed plasmonic contact electrodes creates a strong electric field between the...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8fa14989c37a42bd98ad61aba1637c1f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A photoconductive logarithmic spiral antenna with saw-toothed plasmonic contact electrodes is proposed to provide a higher terahertz radiation compared with the conventional photoconductive antenna (PCA). The use of saw-toothed plasmonic contact electrodes creates a strong electric field between the anode and cathode, which generates a larger photocurrent and thereby effectively increases the terahertz radiation. The proposed PCA was fabricated and measured in response to an 80 fs optical pump from a fiber-based femtosecond laser with a wavelength of 780 nm. When the proposed antenna is loaded with an optical pump power of 20 mW and a bias voltage of 40 V, a broadband pulsed terahertz radiation in the frequency range of 0.1–2 THz was observed. Compared to the conventional PCA, the THz power measured by terahertz time domain spectroscopy (THz-TDS) increased by an average of 10.45 times. |
---|