Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content>
ABSTRACT Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulatio...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8fb690879e064513aa66a0cf7c71185e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8fb690879e064513aa66a0cf7c71185e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8fb690879e064513aa66a0cf7c71185e2021-11-15T15:56:46ZLinking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content>10.1128/mBio.01052-202150-7511https://doaj.org/article/8fb690879e064513aa66a0cf7c71185e2020-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01052-20https://doaj.org/toc/2150-7511ABSTRACT Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulation of the CCM by these factors to functional effects on carbon assimilation rates have been complicated by the aqueous nature of cyanobacteria. Here, we describe the use of cyanobacteria in a semiwet state on glass fiber filtration discs—cyanobacterial discs—to establish dynamic carbon assimilation behavior using gas exchange analysis. In combination with quantitative PCR (qPCR) and transmission electron microscopy (TEM) analyses, we linked the regulation of CCM components to corresponding carbon assimilation behavior in the freshwater, filamentous cyanobacterium Fremyella diplosiphon. Inorganic carbon (Ci) levels, light quantity, and light quality have all been shown to influence carbon assimilation behavior in F. diplosiphon. Our results suggest a biphasic model of cyanobacterial carbon fixation. While behavior at low levels of CO2 is driven mainly by the Ci uptake ability of the cyanobacterium, at higher CO2 levels, carbon assimilation behavior is multifaceted and depends on Ci availability, carboxysome morphology, linear electron flow, and cell shape. Carbon response curves (CRCs) generated via gas exchange analysis enable rapid examination of CO2 assimilation behavior in cyanobacteria and can be used for cells grown under distinct conditions to provide insight into how CO2 assimilation correlates with the regulation of critical cellular functions, such as the environmental control of the CCM and downstream photosynthetic capacity. IMPORTANCE Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access—cues that also impact photosynthesis. We adapted dynamic gas exchange methods generally used with plants to investigate environmental regulation of the CCM and carbon fixation capacity using glass fiber-filtered cells of the cyanobacterium Fremyella diplosiphon. We describe a breakthrough in measuring real-time carbon uptake and associated assimilation capacity for cells grown in distinct conditions (i.e., light quality, light quantity, or carbon status). These measurements demonstrate that the CCM modulates carbon uptake and assimilation under low-Ci conditions and that light-dependent regulation of pigmentation, cell shape, and downstream stages of carbon fixation are critical for tuning carbon uptake and assimilation.Brandon A. RohnkeKiara J. Rodríguez PérezBeronda L. MontgomeryAmerican Society for Microbiologyarticlecarbon dioxide assimilationcarbon dioxide concentration mechanismcarbon dioxide fixationcarboxysomecyanobacteriagas exchangeMicrobiologyQR1-502ENmBio, Vol 11, Iss 3 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
carbon dioxide assimilation carbon dioxide concentration mechanism carbon dioxide fixation carboxysome cyanobacteria gas exchange Microbiology QR1-502 |
spellingShingle |
carbon dioxide assimilation carbon dioxide concentration mechanism carbon dioxide fixation carboxysome cyanobacteria gas exchange Microbiology QR1-502 Brandon A. Rohnke Kiara J. Rodríguez Pérez Beronda L. Montgomery Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
description |
ABSTRACT Cyanobacteria use a carbon dioxide (CO2)-concentrating mechanism (CCM) that enhances their carbon fixation efficiency and is regulated by many environmental factors that impact photosynthesis, including carbon availability, light levels, and nutrient access. Efforts to connect the regulation of the CCM by these factors to functional effects on carbon assimilation rates have been complicated by the aqueous nature of cyanobacteria. Here, we describe the use of cyanobacteria in a semiwet state on glass fiber filtration discs—cyanobacterial discs—to establish dynamic carbon assimilation behavior using gas exchange analysis. In combination with quantitative PCR (qPCR) and transmission electron microscopy (TEM) analyses, we linked the regulation of CCM components to corresponding carbon assimilation behavior in the freshwater, filamentous cyanobacterium Fremyella diplosiphon. Inorganic carbon (Ci) levels, light quantity, and light quality have all been shown to influence carbon assimilation behavior in F. diplosiphon. Our results suggest a biphasic model of cyanobacterial carbon fixation. While behavior at low levels of CO2 is driven mainly by the Ci uptake ability of the cyanobacterium, at higher CO2 levels, carbon assimilation behavior is multifaceted and depends on Ci availability, carboxysome morphology, linear electron flow, and cell shape. Carbon response curves (CRCs) generated via gas exchange analysis enable rapid examination of CO2 assimilation behavior in cyanobacteria and can be used for cells grown under distinct conditions to provide insight into how CO2 assimilation correlates with the regulation of critical cellular functions, such as the environmental control of the CCM and downstream photosynthetic capacity. IMPORTANCE Environmental regulation of photosynthesis in cyanobacteria enhances organismal fitness, light capture, and associated carbon fixation under dynamic conditions. Concentration of carbon dioxide (CO2) near the carbon-fixing enzyme RubisCO occurs via the CO2-concentrating mechanism (CCM). The CCM is also tuned in response to carbon availability, light quality or levels, or nutrient access—cues that also impact photosynthesis. We adapted dynamic gas exchange methods generally used with plants to investigate environmental regulation of the CCM and carbon fixation capacity using glass fiber-filtered cells of the cyanobacterium Fremyella diplosiphon. We describe a breakthrough in measuring real-time carbon uptake and associated assimilation capacity for cells grown in distinct conditions (i.e., light quality, light quantity, or carbon status). These measurements demonstrate that the CCM modulates carbon uptake and assimilation under low-Ci conditions and that light-dependent regulation of pigmentation, cell shape, and downstream stages of carbon fixation are critical for tuning carbon uptake and assimilation. |
format |
article |
author |
Brandon A. Rohnke Kiara J. Rodríguez Pérez Beronda L. Montgomery |
author_facet |
Brandon A. Rohnke Kiara J. Rodríguez Pérez Beronda L. Montgomery |
author_sort |
Brandon A. Rohnke |
title |
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
title_short |
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
title_full |
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
title_fullStr |
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
title_full_unstemmed |
Linking the Dynamic Response of the Carbon Dioxide-Concentrating Mechanism to Carbon Assimilation Behavior in <named-content content-type="genus-species">Fremyella diplosiphon</named-content> |
title_sort |
linking the dynamic response of the carbon dioxide-concentrating mechanism to carbon assimilation behavior in <named-content content-type="genus-species">fremyella diplosiphon</named-content> |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/8fb690879e064513aa66a0cf7c71185e |
work_keys_str_mv |
AT brandonarohnke linkingthedynamicresponseofthecarbondioxideconcentratingmechanismtocarbonassimilationbehaviorinnamedcontentcontenttypegenusspeciesfremyelladiplosiphonnamedcontent AT kiarajrodriguezperez linkingthedynamicresponseofthecarbondioxideconcentratingmechanismtocarbonassimilationbehaviorinnamedcontentcontenttypegenusspeciesfremyelladiplosiphonnamedcontent AT berondalmontgomery linkingthedynamicresponseofthecarbondioxideconcentratingmechanismtocarbonassimilationbehaviorinnamedcontentcontenttypegenusspeciesfremyelladiplosiphonnamedcontent |
_version_ |
1718427105313685504 |