Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground
Abstract Atmospheric levels of pollutants may reduce the UVB intensity at the earth’s surface, with a subsequent reduction in cutaneous vitamin D synthesis. We investigated the association of various pollutants with UVB intensity on the ground. Four-year data obtained from four weather stations from...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8fe79a6d58424358ad5d63106b3537ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:8fe79a6d58424358ad5d63106b3537ce |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:8fe79a6d58424358ad5d63106b3537ce2021-11-08T10:46:35ZAir pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground10.1038/s41598-021-00980-62045-2322https://doaj.org/article/8fe79a6d58424358ad5d63106b3537ce2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00980-6https://doaj.org/toc/2045-2322Abstract Atmospheric levels of pollutants may reduce the UVB intensity at the earth’s surface, with a subsequent reduction in cutaneous vitamin D synthesis. We investigated the association of various pollutants with UVB intensity on the ground. Four-year data obtained from four weather stations from across Kuwait were analyzed by median regression. Pollutants that were negatively associated with UVB were [β (95% CI)]: benzene [− 2.61 (− 4.13, − 1.09)], ethyl-benzene [− 2.20 (− 3.15, − 1.25)], ozone [− 0.23 (− 0.28, − 0.17)], nitric oxide [− 0.11 (− 0.15, − 0.06)], sulfur dioxide [− 0.10 (− 0.17, − 0.04)] and particulate matter PM10 [− 0.002 (− 0.003, − 0.002)]. Pollutants that were negatively associated with the UVB/UVA ratio were [β (95% CI)]: benzene [− 15.57 (− 24.94, − 6.20)], nitric oxide [− 0.53 (− 0.81, − 0.25)], ozone [− 0.38 (− 0.70, − 0.06)], and total hydrocarbon [− 0.02 (− 0.04, − 0.01)]. Furthermore, benzene and nitric oxide levels were higher in the morning and evening hours, which are the times of most solar exposure in this region due to high temperature during midday. In addition to other known factors, attenuation of UVB by these pollutants may contribute to lower vitamin D levels in populations. In addition to direct public health hazard, these pollutants may contribute to the very high prevalence of VDD in this region.Abdur RahmanAbdirashid ElmiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Abdur Rahman Abdirashid Elmi Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
description |
Abstract Atmospheric levels of pollutants may reduce the UVB intensity at the earth’s surface, with a subsequent reduction in cutaneous vitamin D synthesis. We investigated the association of various pollutants with UVB intensity on the ground. Four-year data obtained from four weather stations from across Kuwait were analyzed by median regression. Pollutants that were negatively associated with UVB were [β (95% CI)]: benzene [− 2.61 (− 4.13, − 1.09)], ethyl-benzene [− 2.20 (− 3.15, − 1.25)], ozone [− 0.23 (− 0.28, − 0.17)], nitric oxide [− 0.11 (− 0.15, − 0.06)], sulfur dioxide [− 0.10 (− 0.17, − 0.04)] and particulate matter PM10 [− 0.002 (− 0.003, − 0.002)]. Pollutants that were negatively associated with the UVB/UVA ratio were [β (95% CI)]: benzene [− 15.57 (− 24.94, − 6.20)], nitric oxide [− 0.53 (− 0.81, − 0.25)], ozone [− 0.38 (− 0.70, − 0.06)], and total hydrocarbon [− 0.02 (− 0.04, − 0.01)]. Furthermore, benzene and nitric oxide levels were higher in the morning and evening hours, which are the times of most solar exposure in this region due to high temperature during midday. In addition to other known factors, attenuation of UVB by these pollutants may contribute to lower vitamin D levels in populations. In addition to direct public health hazard, these pollutants may contribute to the very high prevalence of VDD in this region. |
format |
article |
author |
Abdur Rahman Abdirashid Elmi |
author_facet |
Abdur Rahman Abdirashid Elmi |
author_sort |
Abdur Rahman |
title |
Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
title_short |
Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
title_full |
Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
title_fullStr |
Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
title_full_unstemmed |
Air pollutants are negatively associated with vitamin D-synthesizing UVB radiation intensity on the ground |
title_sort |
air pollutants are negatively associated with vitamin d-synthesizing uvb radiation intensity on the ground |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/8fe79a6d58424358ad5d63106b3537ce |
work_keys_str_mv |
AT abdurrahman airpollutantsarenegativelyassociatedwithvitamindsynthesizinguvbradiationintensityontheground AT abdirashidelmi airpollutantsarenegativelyassociatedwithvitamindsynthesizinguvbradiationintensityontheground |
_version_ |
1718442641073373184 |