A systematic identification of species-specific protein succinylation sites using joint element features information
Md Mehedi Hasan,1 Mst Shamima Khatun,2 Md Nurul Haque Mollah,2 Cao Yong,3 Dianjing Guo1 1School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, People’s Republic of China; 2Laboratory of Bioinformat...
Enregistré dans:
Auteurs principaux: | Hasan MM, Khatun MS, Mollah MNH, Yong C, Guo D |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Dove Medical Press
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/8fee99395dda47fdbe8549c8d5dcb7e2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SYNTHESIS AND CHARACTERIZATION OF pH-SENSITIVE N-SUCCINYL CHITOSAN HYDROGEL AND ITS PROPERTIES FOR BIOMEDICAL APPLICATIONS
par: Bashir,Shahid, et autres
Publié: (2019) -
Predicting S-nitrosylation proteins and sites by fusing multiple features
par: Wang-Ren Qiu, et autres
Publié: (2021) -
PseUdeep: RNA Pseudouridine Site Identification with Deep Learning Algorithm
par: Jujuan Zhuang, et autres
Publié: (2021) -
Clinical variability and outcome of succinyl‐CoA:3‐ketoacid CoA transferase deficiency caused by a single OXCT1 mutation: Report of 17 cases
par: Malak A. Alghamdi, et autres
Publié: (2021) -
Prediction model of laparoendoscopic single-site surgery in gynecology using machine learning algorithm
par: Jun Ma, et autres
Publié: (2021)