A systematic identification of species-specific protein succinylation sites using joint element features information
Md Mehedi Hasan,1 Mst Shamima Khatun,2 Md Nurul Haque Mollah,2 Cao Yong,3 Dianjing Guo1 1School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, People’s Republic of China; 2Laboratory of Bioinformat...
Guardado en:
Autores principales: | Hasan MM, Khatun MS, Mollah MNH, Yong C, Guo D |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/8fee99395dda47fdbe8549c8d5dcb7e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SYNTHESIS AND CHARACTERIZATION OF pH-SENSITIVE N-SUCCINYL CHITOSAN HYDROGEL AND ITS PROPERTIES FOR BIOMEDICAL APPLICATIONS
por: Bashir,Shahid, et al.
Publicado: (2019) -
Predicting S-nitrosylation proteins and sites by fusing multiple features
por: Wang-Ren Qiu, et al.
Publicado: (2021) -
PseUdeep: RNA Pseudouridine Site Identification with Deep Learning Algorithm
por: Jujuan Zhuang, et al.
Publicado: (2021) -
Clinical variability and outcome of succinyl‐CoA:3‐ketoacid CoA transferase deficiency caused by a single OXCT1 mutation: Report of 17 cases
por: Malak A. Alghamdi, et al.
Publicado: (2021) -
Prediction model of laparoendoscopic single-site surgery in gynecology using machine learning algorithm
por: Jun Ma, et al.
Publicado: (2021)