Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography

Abstract Age-related macular degeneration (AMD) is the predominant cause of vision loss in the elderly with a major impact on ageing societies and healthcare systems. A major challenge in AMD management is the difficulty to determine the disease stage, the highly variable progression speed and the r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wolf-Dieter Vogl, Hrvoje Bogunović, Sebastian M. Waldstein, Sophie Riedl, Ursula Schmidt-Erfurth
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/8ff0ffc893cb4ef18e330052470eb50c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:8ff0ffc893cb4ef18e330052470eb50c
record_format dspace
spelling oai:doaj.org-article:8ff0ffc893cb4ef18e330052470eb50c2021-12-02T13:35:04ZSpatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography10.1038/s41598-021-85110-y2045-2322https://doaj.org/article/8ff0ffc893cb4ef18e330052470eb50c2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85110-yhttps://doaj.org/toc/2045-2322Abstract Age-related macular degeneration (AMD) is the predominant cause of vision loss in the elderly with a major impact on ageing societies and healthcare systems. A major challenge in AMD management is the difficulty to determine the disease stage, the highly variable progression speed and the risk of conversion to advanced AMD, where irreversible functional loss occurs. In this study we developed an optical coherence tomography (OCT) imaging based spatio-temporal reference frame to characterize the morphologic progression of intermediate age-related macular degeneration (AMD) and to identify distinctive patterns of conversion to the advanced stages macular neovascularization (MNV) and macular atrophy (MA). We included 10,040 OCT volumes of 518 eyes with intermediate AMD acquired according to a standardized protocol in monthly intervals over two years. Two independent masked retina specialists determined the time of conversion to MNV or MA. All scans were aligned to a common reference frame by intra-patient and inter-patient registration. Automated segmentations of retinal layers and the choroid were computed and en-face maps were transformed into the common reference frame. Population maps were constructed in the subgroups converting to MNV (n=135), MA (n=50) and in non-progressors (n=333). Topographically resolved maps of changes were computed and tested for statistical significant differences. The development over time was analysed by a joint model accounting for longitudinal and right-censoring aspect. Significantly enhanced thinning of the outer nuclear layer (ONL) and retinal pigment epithelium (RPE)–photoreceptorinner segment/outer segment (PR-IS/OS) layers within the central 3 mm and a faster thinning speed preceding conversion was documented for MA progressors. Converters to MNV presented an accelerated thinning of the choroid and appearance changes in the choroid prior to MNV onset. The large-scale automated image analysis allowed us to distinctly assess the progression of morphologic changes in intermediate AMD based on conventional OCT imaging. Distinct topographic and temporal patterns allow to prospectively determine eyes with risk of progression and thereby greatly improving early detection, prevention and development of novel therapeutic strategies.Wolf-Dieter VoglHrvoje BogunovićSebastian M. WaldsteinSophie RiedlUrsula Schmidt-ErfurthNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Wolf-Dieter Vogl
Hrvoje Bogunović
Sebastian M. Waldstein
Sophie Riedl
Ursula Schmidt-Erfurth
Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
description Abstract Age-related macular degeneration (AMD) is the predominant cause of vision loss in the elderly with a major impact on ageing societies and healthcare systems. A major challenge in AMD management is the difficulty to determine the disease stage, the highly variable progression speed and the risk of conversion to advanced AMD, where irreversible functional loss occurs. In this study we developed an optical coherence tomography (OCT) imaging based spatio-temporal reference frame to characterize the morphologic progression of intermediate age-related macular degeneration (AMD) and to identify distinctive patterns of conversion to the advanced stages macular neovascularization (MNV) and macular atrophy (MA). We included 10,040 OCT volumes of 518 eyes with intermediate AMD acquired according to a standardized protocol in monthly intervals over two years. Two independent masked retina specialists determined the time of conversion to MNV or MA. All scans were aligned to a common reference frame by intra-patient and inter-patient registration. Automated segmentations of retinal layers and the choroid were computed and en-face maps were transformed into the common reference frame. Population maps were constructed in the subgroups converting to MNV (n=135), MA (n=50) and in non-progressors (n=333). Topographically resolved maps of changes were computed and tested for statistical significant differences. The development over time was analysed by a joint model accounting for longitudinal and right-censoring aspect. Significantly enhanced thinning of the outer nuclear layer (ONL) and retinal pigment epithelium (RPE)–photoreceptorinner segment/outer segment (PR-IS/OS) layers within the central 3 mm and a faster thinning speed preceding conversion was documented for MA progressors. Converters to MNV presented an accelerated thinning of the choroid and appearance changes in the choroid prior to MNV onset. The large-scale automated image analysis allowed us to distinctly assess the progression of morphologic changes in intermediate AMD based on conventional OCT imaging. Distinct topographic and temporal patterns allow to prospectively determine eyes with risk of progression and thereby greatly improving early detection, prevention and development of novel therapeutic strategies.
format article
author Wolf-Dieter Vogl
Hrvoje Bogunović
Sebastian M. Waldstein
Sophie Riedl
Ursula Schmidt-Erfurth
author_facet Wolf-Dieter Vogl
Hrvoje Bogunović
Sebastian M. Waldstein
Sophie Riedl
Ursula Schmidt-Erfurth
author_sort Wolf-Dieter Vogl
title Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
title_short Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
title_full Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
title_fullStr Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
title_full_unstemmed Spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (AMD) in optical coherence tomography
title_sort spatio-temporal alterations in retinal and choroidal layers in the progression of age-related macular degeneration (amd) in optical coherence tomography
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/8ff0ffc893cb4ef18e330052470eb50c
work_keys_str_mv AT wolfdietervogl spatiotemporalalterationsinretinalandchoroidallayersintheprogressionofagerelatedmaculardegenerationamdinopticalcoherencetomography
AT hrvojebogunovic spatiotemporalalterationsinretinalandchoroidallayersintheprogressionofagerelatedmaculardegenerationamdinopticalcoherencetomography
AT sebastianmwaldstein spatiotemporalalterationsinretinalandchoroidallayersintheprogressionofagerelatedmaculardegenerationamdinopticalcoherencetomography
AT sophieriedl spatiotemporalalterationsinretinalandchoroidallayersintheprogressionofagerelatedmaculardegenerationamdinopticalcoherencetomography
AT ursulaschmidterfurth spatiotemporalalterationsinretinalandchoroidallayersintheprogressionofagerelatedmaculardegenerationamdinopticalcoherencetomography
_version_ 1718392686829895680