A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes
Abstract A novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies m...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9009db61c1c64367b7ec14eb53e64c00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9009db61c1c64367b7ec14eb53e64c00 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9009db61c1c64367b7ec14eb53e64c002021-12-02T15:06:00ZA Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes10.1038/s41598-017-07416-02045-2322https://doaj.org/article/9009db61c1c64367b7ec14eb53e64c002017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07416-0https://doaj.org/toc/2045-2322Abstract A novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies media to the neural cells (neural channel, NC). Compared to co-cultures supplied with only one type of medium (or 1:1 mixture), best barrier properties and viability were obtained with culturing HUVECs with endothelial growth medium (EGM) and neural cells with neurobasal medium supplemented with fetal bovine serum (NBMFBS) independently. The measured vascular network permeability were comparable to reported in vivo values (20 kDa FITC-dextran, 0.45 ± 0.11 × 10−6 cm/s; 70 kDa FITC-dextran, 0.36 ± 0.05 × 10−6 cm/s) and a higher degree of neurovascular interfacing (astrocytic contact with the vascular network, GFAP-CD31 stain overlap) and presence of synapses (stained with synaptophysin). The BBB platform can dependably imitate the perivascular network morphology and synaptic structures characteristic of the NVU. This microfluidic BBB model can find applications in screening pharmaceuticals that target the brain for in neurodegenerative diseases.Seokyoung BangSeung-Ryeol LeeJihoon KoKyungmin SonDongha TahkJungho AhnChangkyun ImNoo Li JeonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Seokyoung Bang Seung-Ryeol Lee Jihoon Ko Kyungmin Son Dongha Tahk Jungho Ahn Changkyun Im Noo Li Jeon A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
description |
Abstract A novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies media to the neural cells (neural channel, NC). Compared to co-cultures supplied with only one type of medium (or 1:1 mixture), best barrier properties and viability were obtained with culturing HUVECs with endothelial growth medium (EGM) and neural cells with neurobasal medium supplemented with fetal bovine serum (NBMFBS) independently. The measured vascular network permeability were comparable to reported in vivo values (20 kDa FITC-dextran, 0.45 ± 0.11 × 10−6 cm/s; 70 kDa FITC-dextran, 0.36 ± 0.05 × 10−6 cm/s) and a higher degree of neurovascular interfacing (astrocytic contact with the vascular network, GFAP-CD31 stain overlap) and presence of synapses (stained with synaptophysin). The BBB platform can dependably imitate the perivascular network morphology and synaptic structures characteristic of the NVU. This microfluidic BBB model can find applications in screening pharmaceuticals that target the brain for in neurodegenerative diseases. |
format |
article |
author |
Seokyoung Bang Seung-Ryeol Lee Jihoon Ko Kyungmin Son Dongha Tahk Jungho Ahn Changkyun Im Noo Li Jeon |
author_facet |
Seokyoung Bang Seung-Ryeol Lee Jihoon Ko Kyungmin Son Dongha Tahk Jungho Ahn Changkyun Im Noo Li Jeon |
author_sort |
Seokyoung Bang |
title |
A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
title_short |
A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
title_full |
A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
title_fullStr |
A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
title_full_unstemmed |
A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes |
title_sort |
low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/9009db61c1c64367b7ec14eb53e64c00 |
work_keys_str_mv |
AT seokyoungbang alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT seungryeollee alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT jihoonko alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT kyungminson alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT donghatahk alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT junghoahn alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT changkyunim alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT noolijeon alowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT seokyoungbang lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT seungryeollee lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT jihoonko lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT kyungminson lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT donghatahk lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT junghoahn lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT changkyunim lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes AT noolijeon lowpermeabilitymicrofluidicbloodbrainbarrierplatformwithdirectcontactbetweenperfusablevascularnetworkandastrocytes |
_version_ |
1718388657843339264 |