A data assimilation framework that uses the Kullback-Leibler divergence.
The process of integrating observations into a numerical model of an evolving dynamical system, known as data assimilation, has become an essential tool in computational science. These methods, however, are computationally expensive as they typically involve large matrix multiplication and inversion...
Guardado en:
Autores principales: | Sam Pimentel, Youssef Qranfal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/900f63dbf96d45dd8767f59a7ab06606 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Observation thinning in data assimilation computations
por: Serge Gratton, et al.
Publicado: (2015) -
Opinion dynamics with backfire effect and biased assimilation.
por: Xi Chen, et al.
Publicado: (2021) -
Factor structure of intelligence and divergent thinking subtests: A registered report.
por: Russell T Warne, et al.
Publicado: (2021) -
Improving weather forecasting by assimilation of water vapor isotopes
por: Masataka Tada, et al.
Publicado: (2021) -
Oceanic data assimilation study in northern Chile: use of a 3DVAR
por: Sepúlveda,Héctor H, et al.
Publicado: (2013)