Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^2(0,T;H_0^1(\Omega))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon^p\partial_tu_{\varepsil...
Guardado en:
Autores principales: | Tatiana Danielsson, Pernilla Johnsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institute of Mathematics of the Czech Academy of Science
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/901588ce3f1340a2a6a03ac519dd46bb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
por: BONI,THÉODORE K, et al.
Publicado: (2008) -
O R-CONVERGENCE AND WEAK O R-CONVERGENCE OF NETS AND THEIR APPLICATIONS
por: LI,HONG-YAN, et al.
Publicado: (2008) -
Weak convergence and weak compactness in the space of integrable functions with respect to a vector measure
por: Swartz,Charles
Publicado: (2020) -
Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces
por: Raghad I. Sabri
Publicado: (2021) -
QUASI - MACKEY TOPOLOGY
por: SINGH KHURANA,SURJIT
Publicado: (2007)